1.Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases.
Shuo LI ; Guifang FAN ; Xiaojiaoyang LI ; Yajie CAI ; Runping LIU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(1):3-18
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Biological Products/therapeutic use*
;
Immunity, Innate
;
Signal Transduction
;
Interferon Type I/metabolism*
2.Heterologous production of bioactive xenoacremone analogs in Aspergillus nidulans.
Zhiguo LIU ; Wei LI ; Peng ZHANG ; Yi SUN ; Wen-Bing YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):436-442
Tyrosine-decahydrofluorene derivatives are a class of hybrid compounds that integrate the properties of polyketides and nonribosomal peptides. These compounds feature a [6.5.6] tricarbocyclic core and a para-cyclophane ether moiety in their structures and exhibit anti-tumor and anti-microbial activities. In this study, we constructed the biosynthetic pathway of xenoacremones from Xenoacremonium sinensis ML-31 in the Aspergillus nidulans host, resulting in the identification of four novel tyrosine-decahydrofluorene analogs, xenoacremones I-L (1-4), along with two known analogs, xenoacremones A and B. Remarkably, compounds 3 and 4 contained a 12-membered para-cyclophane ring system, which is unprecedented among tyrosine-decahydrofluorene analogs in X. sinensis. The successful reconstruction of the biosynthetic pathway and the discovery of novel analogs demonstrate the utility of heterologous expression strategy for the generation of structurally diverse natural products with potential biological activities.
Aspergillus nidulans/metabolism*
;
Biological Products/metabolism*
;
Polyketides/metabolism*
;
Peptides/metabolism*
;
Biosynthetic Pathways
;
Multigene Family
3.A comprehensive review of natural products with anti-hypoxic activity.
Juncai LIU ; Zhen GE ; Xiao JIANG ; Jingjing ZHANG ; Jianan SUN ; Xiangzhao MAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):499-515
Natural products exhibit substantial impacts in the field of anti-hypoxic traetment. Hypoxia can cause altitude sickness and other negative effect on the body. Headache, coma, exhaustion, vomiting and, in severe cases, death are some of the clinical signs. Currently, hypoxia is no longer just a concern in plateau regions; it is also one of the issues that can not be ignored by urban residents. This review covered polysaccharides, alkaloids, saponins, flavonoids, peptides and traditional Chinese compound prescriptions as natural products to protect against hypoxia. The active ingredients, effectiveness and mechanisms were discussed. The related anti-hypoxic mechanisms involve increasing the hemoglobin (HB) content, glycogen content and adenosine triphosphate (ATP) content, removing excessive reactive oxygen species (ROS), reducing lipid peroxidation, regulating the levels of related enzymes in cells, protecting the structural and functional integrity of the mitochondria and regulating the expression of apoptosis-related genes. These comprehensive summaries are beneficial to anti-hypoxic research and provide useful information for the development of anti-hypoxic products.
Humans
;
Biological Products/therapeutic use*
;
Hypoxia/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Alkaloids
5.Advances in the biosynthesis of cyclodipeptide type natural products derived from actinomycetes.
Yunhong HUANG ; Jinzu LI ; Simin CHEN ; Wenhui LIU ; Miaoer WU ; Du ZHU ; Yunchang XIE
Chinese Journal of Biotechnology 2023;39(11):4497-4516
Cyclodipeptide (CDP) composed of two amino acids is the simplest cyclic peptide. These two amino acids form a typical diketopiperazine (DKP) ring by linking each other with peptide bonds. This characteristic stable ring skeleton is the foundation of CDP to display extensive and excellent bioactivities, which is beneficial for CDPs' pharmaceutical research and development. The natural CDP products are well isolated from actinomycetes. These bacteria can synthesize DKP backbones with nonribosomal peptide synthetase (NRPS) or cyclodipeptide synthase (CDPS). Moreover, actinomycetes could produce a variety of CDPs through different enzymatic modification. The presence of these abundant and diversified catalysis indicates that actinomycetes are promising microbial resource for exploring CDPs. This review summarized the pathways for DKP backbones biosynthesis and their post-modification mechanism in actinomycetes. The aim of this review was to accelerate the genome mining of CDPs and their isolation, purification and structure identification, and to facilitate revealing the biosynthesis mechanism of novel CDPs as well as their synthetic biology design.
Actinobacteria/metabolism*
;
Actinomyces/metabolism*
;
Biological Products/metabolism*
;
Bacteria/metabolism*
;
Diketopiperazines/metabolism*
;
Amino Acids
6.Covalent flavoproteins: types, occurrence, biogenesis and catalytic mechanisms.
Minjun WANG ; Wenyuan ZHANG ; Nan WANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(10):749-760
Flavoproteins are proteins that contain a nucleic acid derivative of riboflavin: flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Flavoproteins are involved in a wide array of biological processes, such as photosynthesis, DNA repair and natural product biosynthesis. It should be noted that 5%-10% of flavoproteins have a covalently linked flavin prosthetic group. Such covalent linkages benefit the holoenzyme in several ways including improving the stability and catalytic potency. During the past decade, significant progress has been made in covalent flavoproteins, especially with respect to enzyme-dependent biogenesis and discovery of novel linkage types. The present review gives a condensed overview of investigations published from March 2009 to December 2021, with emphasis on the discovery, biogenesis and their catalytic role in natural product biosynthesis.
Flavoproteins/metabolism*
;
Flavin-Adenine Dinucleotide/metabolism*
;
Flavin Mononucleotide/metabolism*
;
Riboflavin
;
Biological Products
7.Biosynthesis and regulation of diterpenoids in medicinal plants.
Junze REN ; Yu WU ; Zhanpin ZHU ; Ruibing CHEN ; Lei ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(10):761-772
Plant diterpenoids are widely distributed and abundant natural products with diverse structures and functions in nature, which have been commonly used in pharmaceutical, agricultural and industrial production. In recent years, plant diterpenoids have attracted increasing attention, including their biosynthetic pathways, transcriptional regulatory networks, and biological functions. Herein, the biosynthetic pathways of diterpenoids are summarized in a modular fashion. Further, the regulatory network between diterpene biosynthesis and environmental factors is reviewed. Insights into diterpene metabolism may drive elucidation of complex active diterpene pathways and serve as a knowledge repository for metabolic engineering and cell factory construction.
Plants, Medicinal/metabolism*
;
Diterpenes/chemistry*
;
Metabolic Engineering
;
Biosynthetic Pathways
;
Biological Products/metabolism*
8.Tetracycline natural products: discovery, biosynthesis and engineering.
Haiyan WANG ; Lijun WANG ; Keqiang FAN ; Guohui PAN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(10):773-794
Tetracycline (TC) natural products possess a variety of remarkable bioactivities and diverse structures. They are an important and fertile source for developing novel drugs. As one of the most successful drug families, TC antibiotics have been in clinical use for over seven decades, and continue to make an important contribution to human health nowadays. To date, studies on TC natural products and their biosynthesis have revealed numerous novel biochemical mechanisms and regulatory elements, which facilitates the rational metabolic engineering studies for generating novel bioactive TC analogs and inspires the development of new synthetic biology tools. In this review, we provide a comprehensive overview on the discovery, biosynthesis, and engineering of the existing TC natural products. These analyses will be of great value for the discovery, design and development of novel TC drugs in the future.
Humans
;
Biological Products/metabolism*
;
Anti-Bacterial Agents
;
Metabolic Engineering
;
Synthetic Biology
;
Tetracycline
9.Natural products: potential therapeutic agents for atherosclerosis.
Xiaobei CHENG ; Caili ZHAO ; Zhiwei JIN ; Jianping HU ; Zhenzhen ZHANG ; Chao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):830-845
Atherosclerosis (AS) is an invisible killer among cardiovascular diseases (CVD), which has seriously threatened the life of quality. The complex pathogenesis of AS involves multiple interrelated events and cell types, such as macrophages, endothelial cells, vascular smooth muscle cells and immune cells. Currently, the efficacy of recommended statin treatment is not satisfactory. Natural products (NPs) have attracted increasing attention with regard to their broad structural diversity and biodiversity, which makes them a promising library in the demand for lead compounds with cardiovascular protective bio-activity. NPs can preclude the development of AS by regulating lipid metabolism, ameliorating inflammation, stabilizing plaques, and remodeling the gut microbiota, which lays a foundation for the application of NPs in clinical therapeutics.
Humans
;
Biological Products/metabolism*
;
Endothelial Cells/metabolism*
;
Atherosclerosis/metabolism*
;
Macrophages/metabolism*
;
Inflammation/metabolism*
10.The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica.
Jinhong ZHANG ; Zhiyong CUI ; Qingsheng QI ; Jin HOU
Chinese Journal of Biotechnology 2022;38(2):478-505
Yarrowia lipolytica, as an important oleaginous yeast, has been widely used in metabolic engineering. Y. lipolytica is considered as an ideal host for the production of natural products such as terpenes, polyketides and flavonoids, due to its ability to utilize a variety of hydrophobic substrates, high stress tolerance to acid and salt, high flux of tricarboxylic acid cycle and the ability in providing abundant the common precursor acetyl-CoA. Recently, more and more tools for genetic editing, gene expression and regulation has been developed in Y. lipolytica, which facilitate the metabolic engineering of Y. lipolytica for bio-manufacturing. In this review, we summarized the recent progresses in developing gene expression and natural product synthesis in Y. lipolytica, and also discussed the challenges and possible solutions in heterologous synthesis of natural products in this yeast.
Biological Products/metabolism*
;
Gene Editing
;
Metabolic Engineering
;
Polyketides/metabolism*
;
Yarrowia/metabolism*

Result Analysis
Print
Save
E-mail