1.Preface for special issue on microbiome engineering.
Chinese Journal of Biotechnology 2025;41(6):1-6
Microbiome engineering is an emerging interdisciplinary field that systematically investigates and applies engineering methods to uncover the functions, structures, and interaction mechanisms of microbial communities with their environments, offering critical insights into global challenges. To showcase the latest advancements and achievements in this field, Chinese Journal of biotechnology has specially organized a special issue, inviting experts and scholars from multiple domestic institutions to elaborate on the practical applications and potential of microbiome engineering in agriculture and industrial production, environmental and ecological restoration, and health and medical treatment, from perspectives of fundamental research, technological innovation, and engineering applications. Additionally, this issue explores future trends in the field, providing valuable references to promote innovation and contribute to the sustainable development of human society.
Humans
;
Bioengineering
;
Biotechnology
;
Microbiota
2.Practice and thinking of multi-dimensional teaching of "Principle of Biotechnology" under the "Double First-Class" initiative.
Haiyan ZHOU ; Zhongce HU ; Xue CAI ; Zhiqiang LIU ; Liqun JIN ; Yuguo ZHENG
Chinese Journal of Biotechnology 2024;40(11):4288-4300
The Principle of Biotechnology is a compulsory course for undergraduates majoring in bioengineering at Zhejiang University of Technology. In response to the "Double First-Class" initiative and in order to improve the teaching effect of this course and the quality of talent training, we reformed the teaching of Principle of Biotechnology, the core course in bioengineering. Specifically, we reorganized the teaching contents, improved the process management of teaching and learning, and implemented multi-dimensional teaching practice. These measures improved teaching quality and promoted the achievement of training goals, which was of great significance for developing "First-Class" disciplines.
Biotechnology/education*
;
Teaching
;
China
;
Curriculum
;
Bioengineering/education*
;
Universities
3.Design and practice of the course of "Biochemical Engineering Experiment" under the context of "Emerging Engineering Education".
Dongfang TANG ; Qingqing ZHOU ; Xiaofang LUO ; Meifeng WANG ; Yunhui LIAO ; Yang LIAO ; Zuodong QIN
Chinese Journal of Biotechnology 2023;39(8):3520-3529
"Biochemical Engineering Experiment" is a compulsory curriculum for the concentrated practical teaching of biotechnology majors in Hunan University of Science and Engineering. It is also an experimental curriculum for improving the overall quality of bioengineering students under the context of "Emerging Engineering Education". The course includes comprehensive experiments and designable experiments, and the contents of which are designed by combining the local characteristic resources of Yongzhou, the research platform and the characteristics of the talents with engineering background. In the teaching practice, methods such as heuristic teaching, research cases-embedded teaching and interactive teaching are comprehensively used to boost students' interest in learning and stimulate their innovative thinking and application capability. Through curriculum examination and post-class investigation, it was found that the students' abilities of knowledge transfer and application were significantly improved, and they achieved excellent performances in discipline competitions and approved project proposals. The practice and continuous improvement of this course may facilitate fostering high-level innovative and application-oriented talents of biotechnology majors.
Humans
;
Curriculum
;
Students
;
Learning
;
Bioengineering
;
Biomedical Engineering
4.Multiplex gene editing and regulation techniques based on CRISPR/Cas system.
Xiangrui FAN ; Junyan WANG ; Liya LIANG ; Rongming LIU
Chinese Journal of Biotechnology 2023;39(6):2449-2464
The CRISPR/Cas systems comprising the clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an acquired immune system unique to archaea or bacteria. Since its development as a gene editing tool, it has rapidly become a popular research direction in the field of synthetic biology due to its advantages of high efficiency, precision, and versatility. This technique has since revolutionized the research of many fields including life sciences, bioengineering technology, food science, and crop breeding. Currently, the single gene editing and regulation techniques based on CRISPR/Cas systems have been increasingly improved, but challenges still exist in the multiplex gene editing and regulation. This review focuses on the development and application of multiplex gene editing and regulation techniques based on the CRISPR/Cas systems, and summarizes the techniques for multiplex gene editing or regulation within a single cell or within a cell population. This includes the multiplex gene editing techniques developed based on the CRISPR/Cas systems with double-strand breaks; or with single-strand breaks; or with multiple gene regulation techniques, etc. These works have enriched the tools for the multiplex gene editing and regulation and contributed to the application of CRISPR/Cas systems in the multiple fields.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Bacteria/genetics*
;
Archaea
;
Bioengineering
5.Development of a first-class undergraduate major in bioengineering facing the emerging engineering direction of biomedicine.
Qiyao WANG ; Shuhong GAO ; Yunpeng BAI ; Guobin REN ; Yingping ZHUANG ; Gonghua SONG
Chinese Journal of Biotechnology 2022;38(3):1227-1236
In the "Tutorial for outline of the healthy China 2030 plan", biomedicine was listed as a key planning and development area. Shanghai government also lists biomedicine as an emerging pillar industry. The rapid development of biomedicine industry put higher requirement for talents. Taking the idea of cross integration, mutually beneficial development, inheritance and innovation, the School of Biotechnology of East China University of Science and Technology organically integrates bioengineering and pharmaceutical majors to develop a new undergraduate engineering program of biomedicine, which specially reforms the talent training practice from the aspects of developing a "trinity teaching" standard system, a "three integration, three convergence" curriculum system, and a "three comprehensive education" innovative talent training system. We put forward the trinity of "value guidance, knowledge system, technology and non-technical core competence literacy" to foster emerging biomedicine engineering talents, and developed a comprehensive innovative talents training mode featured by "covering class-in and class-out, covering every student, and covering ideology and curriculum". Moreover, we established effective connections between courses and training goals, between general education courses and professional courses, and between top-notch talent training systems and training programs. Based on the achievements of teaching reform of the emerging engineering program "intelligent bio-manufacturing", the experience we obtained may provide ideas for development of the first-class bioengineering major in China.
Bioengineering
;
Biomedical Engineering
;
China
;
Curriculum
;
Humans
;
Students
6.Reform of the bio-separation engineering curriculum under the context of "Emerging Engineering Education".
He NI ; Ruifang FAN ; Liang YIN ; Yutao WANG ; Jianfang CHEN
Chinese Journal of Biotechnology 2022;38(4):1612-1618
"Bio-separation engineering" is a compulsory course for undergraduate students majored in bioengineering, and an important part of the "emerging engineering education" system for bioengineering. Our teaching team follows the principle of "student development as the center, innovation thinking as the core". Guided by the concept of "learning achievement", we reconstructed the teaching contents of this course, and carried out the teaching reform aiming at solving several long-standing problems. These include, for instance, the theoretical teaching is separated from the experimental practice, and students cannot internalize the theoretical knowledge into practical ability in time. Moreover, the contents of course is out-of-date and out of line with industry demand, the teaching form and assessment methods are relatively single, and the students' professional ability and quality are not effectively cultivated. In the new curriculum system, in which the "online" and "offline" teaching are both applied, we broke the boundary between theoretical and experimental courses, and made the contents keep up with the forefront of industry development through research-based teaching. In terms of teaching methods and teaching evaluation, we made full use of modern information technology to enrich classroom teaching activities, and carried out complete, dynamic and diversified assessment for students. These teaching reform measures greatly improved the students' interest in learning this course, as well as their professionalism and research ability.
Bioengineering
;
Biomedical Engineering
;
Curriculum
;
Humans
;
Learning
;
Students
7.Teaching reform and practice of bioengineering comprehensive experiment based on virtual simulation technology.
Bin DONG ; Tao WU ; Zhigang YAO ; Jun WANG ; Jianqing LI ; Wenjuan ZHAO ; Longxiang LIU ; Chunlong SUN ; Zhiwei SU ; Bin LIU
Chinese Journal of Biotechnology 2022;38(4):1671-1684
Bioengineering majors require students to acquire excellent abilities of thinking and analyzing complex problems and have high requirements for students' comprehensive practical skills. Because of the professional characteristics, it is necessary to develop students' abilities to solve complex problems via the teaching of a series of experiments. Therefore, it is particularly important to reform the traditional experiment teaching for students majoring in bioengineering to improve the teaching quality, which have great significance for the cultivation of comprehensive talents. In this study, with the advantages of geographical location and resources to cultivate application-oriented innovative talents, the course group of Comprehensive Experiment of Bioengineering has designed the course based on virtual simulation technology in Binzhou University. Taking the experiment of extraction and bioactivity analysis of Suaeda salsa (growing in the Yellow River Delta) polysaccharide in fermentation as a case, we studied the course design idea, experimental process, teaching method and result analysis, and have improved the teaching performance. This case analysis provides new ideas and content reference for the teaching reform of similar courses.
Bioengineering/education*
;
Biomedical Engineering/education*
;
Humans
;
Students
;
Technology
;
Universities
8.Development of first-class biotechnology major under new economic situation.
Wenjie YUAN ; Fangling JI ; Tingting ZHAO ; Jun YANG ; Lingyun JIA
Chinese Journal of Biotechnology 2022;38(12):4789-4796
The rapid development of bioeconomy urgently needs the support of biotechnology talents. Establishing an innovative training mode of biotechnology talents can provide support for regional economic development and industrial upgrading. Closely revolved around the concepts of new engineering disciplines development, such as serving the national strategy, docking industry, leading the future development and student-centered, a new economy-oriented training system was developed in School of Bioengineering of Dalian University of Technology. These systems include interdisciplinary curriculum system reconstruction, project-based teaching mode reform, evaluation system implementation and other aspects. The reform and exploration of the first-class biotechnology major under the new economic situation, puts forward the theory of value guidance, deep foundation, strong sense of innovation, technical and non-technical core ability literacy. This reform meets the industry demand for talent diversification, personalization, and dynamic change, helps the merge of industry and education, which provides a way for fostering first-class biotechnology-majored undergraduates.
Humans
;
Biotechnology
;
Bioengineering
;
Biomedical Engineering
;
Students
;
Curriculum
9.Development and practice of national first-class undergraduate course "bioengineering equipment".
Yuanshan WANG ; Kun NIU ; Feng CHENG ; Zheming WU ; Jianmiao XU ; Xiaofei SONG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4797-4807
As a strategic emerging industry of China, the biotechnology industry develops rapidly in recent years, which significantly increased the demand for creative and capable talents. As a core curriculum of bioengineering specialty, biotechnology equipment plays an important role in fostering such talents. To address the problems in biotechnology equipment course teaching such as limited equipment availability, limited engineering practice, and lack of learning motivations, curriculum reform and optimization were performed based on curriculum resource development, virtual reality-physical combined engineering training, and boosting learning motivations. The optimized teaching contents focus on fostering morality, intelligence, and creative practice abilities by connecting new requirements of social development, introducing new progress in biotechnology research, as well as new practices in research and development (R & D). Measures such as teaching methods innovation, assessment and evaluation methods optimization, cutting-edge R & D progress, diverse resources integration, and online-offline combined teaching, were developed to boost the learning motivation and foster the innovation competence of students. By above exploration and practice, the practice and innovation competence of students were significantly enhanced.
Humans
;
Students
;
Learning
;
Curriculum
;
Bioengineering
;
Biomedical Engineering
10.Implementation of a WeChat small program assisted process assessment system in "Experiment of Inorganic Chemistry" for Biological Engineering undergraduates.
Jing XU ; Bin CAI ; Yunfang HUANG ; Weihai SUN
Chinese Journal of Biotechnology 2021;37(12):4430-4438
The convenience of "no installation, available at your fingertips" of the WeChat small program makes it unique in the application of mobile terminal auxiliary experimental teaching. In order to optimize the assessment system and improve the quality and outcomes of experimental teaching, a self-designed WeChat small program was used to assist the development of the process assessment system. This system was applied to the teaching practice of "Experiment of Inorganic Chemistry" course for the first-year undergraduates majored in Biological Engineering, with the aim to promote teaching and learning by assessment. The results showed that course scores of the students who used this small program were superior to the control group and the correlation between the process assessment and final examination results was significant. These results indicated the WeChat small program assisted process assessment could effectively improve the learning outcomes of students, enable them to grasp the knowledge of Experiment of Inorganic Chemistry efficiently. The results of the questionnaire for the teachers and students also showed a high recognition of the WeChat small program assisted teaching.
Bioengineering
;
Chemistry, Inorganic
;
Humans
;
Learning
;
Process Assessment, Health Care
;
Students

Result Analysis
Print
Save
E-mail