1.Preparation of collagen-polysaccharide composite hydrogels and research progress in biomedical applications.
Meihong XU ; Enxiang JIAO ; Ziru SUN ; Kunshan YUAN ; Xiangyi FENG ; Yuanbiao LIU ; Kai GUO ; Kun LI ; Haijun ZHANG ; Xuehai ZHANG
Journal of Biomedical Engineering 2024;41(6):1286-1292
Collagen contains abundant cell binding motifs, which are conducive to adhesion, migration, and differentiation, maintain cell vitality and promote cell proliferation. However, pure collagen hydrogel has some shortcomings such as poor mechanical properties, poor thermal stability and fast degradation. Numerous studies have shown that the properties of collagen can be improved by combining it with natural polysaccharides such as alginate, chitosan, hyaluronic acid and cellulose. In this paper, the research status and biological application fields of four kinds of composite hydrogels, including collagen-alginate composite hydrogels, collagen-chitosan hydrogels, collagen-hyaluronic acid hydrogels and collagen-cellulose hydrogels, were summarized. The common preparation methods of four kinds of composite hydrogels were introduced, and the future development direction of collagen-based composite hydrogels was prospected.
Hydrogels/chemical synthesis*
;
Collagen/chemistry*
;
Polysaccharides/chemistry*
;
Alginates/chemistry*
;
Hyaluronic Acid/chemistry*
;
Chitosan/chemistry*
;
Biocompatible Materials/chemistry*
;
Humans
;
Tissue Engineering/methods*
;
Cellulose/chemistry*
;
Tissue Scaffolds
2.Research Status of the Skeletalre Construction of Chest Wall.
Daixing ZHONG ; Lei WANG ; Xiaofei LI ; Lijun HUANG
Chinese Journal of Lung Cancer 2018;21(4):273-276
Chest wall defect may be caused by many factors such as the resection of tumor and trauma, and the reconstruction of bone-defection is still the key point of thoracic surgery. With the development of material science, more and more new materials have been used in medical practice, which makes huge progress in the surgery of chest wall. However, none of these materials satisfy all the practical needs of the reconstruction. Recently, with the development of the capacity of computer, 3D-printing technology has been gradually used in clinical work, and the idea of individual treatment has been accepted by more and more people. The weakness of these materials may be solved by the new material and the application of individual treatment, which could also make great advance in chest wall surgery. This article will make a summary of the research on the reconstruction of chest wall.
.
Animals
;
Biocompatible Materials
;
chemical synthesis
;
chemistry
;
Humans
;
Printing, Three-Dimensional
;
Reconstructive Surgical Procedures
;
instrumentation
;
methods
;
Thoracic Neoplasms
;
surgery
;
Thoracic Wall
;
surgery
;
transplantation
3.Study on the acid hydrolysis, fiber remodeling and bionics mineralization of rat tail tendon collagen type Ⅰ.
Zhan ZHANG ; Chun ZHANG ; Qiaofeng GUO
Journal of Zhejiang University. Medical sciences 2016;45(6):592-597
To produce bionic bone material that is consistent with human bone in chemical composition and molecular structure using rat tail tendon collagen type Ⅰ.The type Ⅰcollagen derived from rat tail was extracted by acetic acid to form collagen fibers. The reconstructed collagen fibers were placed in the mineralized solution to mimic bone mineralization for 2-6 days. Bone mineralization was observed by transmission electron microscopy and electron diffraction.Collagen fibers with characteristic D-Band structure were reconstructed by using rat tail tendon collagen type Ⅰ extracted with acid hydrolysis method. Transmission electron microscopy and electron diffraction showed that calcium hydroxyapatite precursor infiltrated into the collagen fibers, and the collagen fibers were partially mineralized after 2 days of mineralization; the collagen fibers were completely mineralized and bionic bone material of typeⅠ collagen/calcium hydroxyapatite was formed after 6 days of mineralization.The collagen type Ⅰ can be extracted from rat tail tendon by acid hydrolysis method, and can be reformed and mineralized to form the bionic bone material which mimics human bone in chemical composition and the molecular structure.
Animals
;
Biocompatible Materials
;
chemical synthesis
;
Bone Matrix
;
chemistry
;
growth & development
;
Bone Substitutes
;
chemical synthesis
;
Bone and Bones
;
anatomy & histology
;
chemistry
;
Calcification, Physiologic
;
Collagen Type I
;
biosynthesis
;
chemistry
;
ultrastructure
;
Humans
;
Hydroxyapatites
;
chemistry
;
Rats
;
Tail
;
Tendons
;
chemistry
;
ultrastructure
;
Tissue Engineering
;
methods
4.Study of the preparation of silk fibroin gel and its morphology as drug release matrix in vitro and in vivo.
Qing LI ; Jie HUANG ; Fei HE ; Qingmei HE ; Chuanbao CAO ; Song WANG
Journal of Biomedical Engineering 2013;30(4):794-811
Silk fibroin (SF)/sodium alginate (SA) hydrogels can be used as drug injection materials. Homogenate was prepared by centrifugation of the pig myocardial extracellular matrix (PMM) and its modification of SF gel material. This paper observes and compares the different components SF, SF/SA, SF/SA/PMM to illustrate the SF/SA/PMM ternary material as a drug delivery composition material. This ternary material can shorten the gel time, and can make the gel form to be maintained better. Meanwhile, it makes the internal structure of the gel looser so that the hole wall becomes thinner and more conducive to the drug release. In addition, it has good biocompatibility proved by pathological analysis, and is able to enhance the mesenchymal stem cells growth activity, which has great significance in carrying out drug control release.
Alginates
;
chemical synthesis
;
chemistry
;
Animals
;
Biocompatible Materials
;
chemical synthesis
;
Delayed-Action Preparations
;
chemistry
;
Drug Carriers
;
chemical synthesis
;
chemistry
;
Extracellular Matrix
;
chemistry
;
Fibroins
;
chemical synthesis
;
chemistry
;
Glucuronic Acid
;
chemical synthesis
;
chemistry
;
Hexuronic Acids
;
chemical synthesis
;
chemistry
;
Hydrogels
;
chemical synthesis
;
chemistry
;
Myocardium
;
chemistry
;
Rats
;
Swine
;
Tissue Extracts
;
chemistry
5.Multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin.
Lin MA ; Jian-feng ZHOU ; Quan JING ; Ji-zhi ZHAO ; Kuo WAN
Chinese Medical Sciences Journal 2012;27(2):106-111
OBJECTIVETo investigate whether multiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin.
METHODSTwelve caries-free human primary molars were randomly divided into 2 groups. In group 1, each tooth was hemisected into 2 halves. One half was assigned to the control subgroup 1, which was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; the other half was assigned to experimental subgroup 1, in which the adhesive was applied three times before light curing. In group 2, one split half tooth was bonded with a commercially available one-step self-etching adhesive according to the manufacturer's instructions; for the other half, three layers of adhesive were applied with each successive layer of light curing. Specimens were stored in 0.9% NaCl containing 0.02% sodium azide at 37℃ for 18 months and then were subjected to microtensile bond strength test and the fracture mode analysis.
RESULTSWhen the adhesive was applied three times before light curing, the bond strength of the experimental subgroup 1 was significantly higher than that of the control subgroup 1 (47.46∓13.91 vs. 38.12∓11.21 MPa, P<0.05). When using the technique of applying multiple layers of adhesive with each successive layer of light curing, no difference was observed in bond strength between the control subgroup and the experimental subgroup (39.40±8.87 vs. 40.87±9.33 MPa, P>0.05).
CONCLUSIONMultiple coatings can improve the bond durability of one-step self-etching adhesive to primary dentin when using the technique of light-curing after applying 3 layers of adhesive.
Acid Etching, Dental ; methods ; Adhesiveness ; Child ; Coated Materials, Biocompatible ; chemical synthesis ; chemistry ; pharmacology ; Dental Cements ; chemical synthesis ; chemistry ; pharmacology ; Dental Prosthesis ; Dental Restoration Failure ; Dentin ; chemistry ; drug effects ; Dentin-Bonding Agents ; pharmacology ; Electroplating ; methods ; Equipment Failure Analysis ; Humans ; Materials Testing ; Tensile Strength ; drug effects
6.Advancement of research on polyamidoamine dendrimers.
Journal of Biomedical Engineering 2012;29(5):1003-1006
Polyamidoamine (PAMAM) dendrimers is synthesized by the American scientist, Tomalia, in 1985 and is now used widely in many fields such as gene carriers, photoelectric sensor, wastewater treatment, drug carriers and catalyst. The present paper mainly reviews the structure and methods of synthesis, celluar cytotoxicity, achievements of gene and drug carriers research, advancement and prospect of PAMAM as a carrier in glioma therapy. Besides, it also involves an outline for the future research of the radiotherapy for glioma.
Biocompatible Materials
;
chemical synthesis
;
chemistry
;
Dendrimers
;
chemical synthesis
;
chemistry
;
Drug Carriers
;
Genetic Vectors
7.Research progress of magnesium and its alloys as orthopedic implant biomaterial.
Fengjiao WANG ; Jinpeng ZHUANG ; Lei ZHOU ; Jinglong YAN
Journal of Biomedical Engineering 2012;29(4):798-802
Magnesium based implants have the characteristics of bio-degradability, osteoconductive, and, regulatory strength. After the tissue has healed sufficiently, the burden of a second surgical procedure can be avoided. However, the degradation speed is so fast as to limit its clinical application. Hence, it is crucial for the biomedical magnesium alloys to be able to change their biodegradation behavior and speed. This paper reviews the degradability, biological activity and biocompatibility of magnesium and its alloys as orthopedic biomaterial in vitro and vivo to explore the possible way to modify the characteristics of its degradability, for the purpose of controllable degradation speed.
Absorbable Implants
;
Alloys
;
chemistry
;
Animals
;
Biocompatible Materials
;
chemical synthesis
;
Bone Plates
;
Bone Screws
;
Bone Substitutes
;
chemistry
;
Humans
;
Magnesium
;
chemistry
8.Preparation of alpha-tricalcium phosphate/HA whisker/carboxymethyl chitosan-gelatin composite porous bone cement.
Dongjuan WEI ; Xiang ZHANG ; Jianwen GU ; Ping HU ; Weizhong YANG ; Dongning CHEN ; Dali ZHOU
Journal of Biomedical Engineering 2012;29(3):491-495
In order to investigate the effects of HA whisker and carboxymethyl chitosan-gelatin(CMC-Gel) on the mechanical properties of porous calcium phosphate cement, a series of alpha-tricalcium phosphate (alpha-TCP), HA whisker and L-sodium glutamate porogen with different mass fractions were mixed, and setting liquid was added to them to prepare alpha-TCP/HA whisker composite porous bone cement. Then, the cement was immersed in a series of CMC-Gel solutions which had different weight ratios of CMC to Gel to prepare alpha-TCP/HA whisker/CMC-Gel composite porous bone cement. The compressive strengths and microstructure of cement were characterized by mechanical testing machine and SEM. The results showed that when the mass fraction of HA whisker is 4%, the compressive strength of alpha-TCP/HA whisker composite porous bone cement reaches 2.57MPa, which is 1.81 times that of alpha-TCP bone cement. When the weight ratio of CMC to Gel is 50:50, the compressive strength of alpha-TCP/HA whisker/CMC-Gel composite porous bone cement is 3. 34MPa, which is 2.35 times that of alpha-TCP bone cement, and the toughness of the composite cement is greatly improved as well.
Biocompatible Materials
;
chemistry
;
pharmacology
;
Bone Cements
;
chemical synthesis
;
Calcium Phosphates
;
chemistry
;
Chitosan
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
Compressive Strength
;
Gelatin
;
chemistry
;
Hydroxyapatites
;
chemical synthesis
;
chemistry
;
Porosity
9.Study on preparation and physicochemical properties of surface modified sintered bone.
Jingfeng LI ; Qixin ZHENG ; Xiaodong GUO
Journal of Biomedical Engineering 2012;29(3):474-478
The aim of this study is to investigate a new method for preparing a biomimetic bone material-surface modified sintered bovine cancellous bone, and to improve its bioactivity as a tissue engineering bone. The prepared sintered bovine cancellous bones with the same size were randomly divided into two groups, immersing in 1 and 1. 5 times simulated body fluid (SBF), respectively. The three time periods of soak time were 7, 14, and 21 days. After sintered bone was dried, the surface morphology of sintered bone and surface mineralization composition were observed under scanning electron microscopy (SEM). By comparing the effect of surface modification of sintered bone materials, we chose the most ideal material and studied its pore size, the rate of the porosity, the compress and bend intensity. And then the material and the sintered bone material without surface modification were compared. The study indicated that sintered bone material immersed in SBF (1.5 times) for 14 days showed the best effect of surface modification, retaining the original physico-chemical properties of sintered bone.
Animals
;
Biocompatible Materials
;
chemical synthesis
;
Biomimetic Materials
;
chemical synthesis
;
Bone Substitutes
;
Bone and Bones
;
chemistry
;
drug effects
;
Calcification, Physiologic
;
physiology
;
Cattle
;
Chemical Phenomena
;
Hydroxyapatites
;
chemistry
;
Porosity
;
Surface Properties
;
Tissue Engineering
;
methods
10.In vitro biologic evaluation on nano-hydroxyapatite/poly (L-lactic acid) biocomposites fabricated using in-situ growth method.
Caiyun ZHANG ; Qianfeng FENG ; Tao ZHANG ; Jin CHEN ; Chuanhua LU ; Hongfei WU
Journal of Biomedical Engineering 2012;29(2):307-310
The aim of this research was to estimate the bioactivity of nano-hydroxyapatite/poly (L-lactic acid) composites in simulated body fluid. In vitro test showed that the pH value of simulated body fluid (SBF) declined gradually and the existence of hydroxyapatite (HA) particles neutralized the acid degradation product of poly (L-lactic acid) (PLLA). Bone-like apatite deposited on the surface, and silkworm-like crystals and plate-like clusters appeared after soaking. At the same time, there were many honeycomb-like pores caused by nano-composite degraded. The results indicated that the hydroxyapatite/poly (L-lactic acid) nano-composites have good bioactivity and degradation characteristics.
Biocompatible Materials
;
Bone Substitutes
;
chemical synthesis
;
chemistry
;
Durapatite
;
chemical synthesis
;
chemistry
;
Lactic Acid
;
chemistry
;
Microscopy, Electron, Scanning
;
Nanoparticles
;
Polyesters
;
chemical synthesis
;
chemistry
;
Polymers
;
chemistry
;
Porosity
;
X-Ray Diffraction

Result Analysis
Print
Save
E-mail