1.Research progress in leveraging biomaterials for enhancing NK cell immunotherapy.
Journal of Zhejiang University. Medical sciences 2023;52(3):267-278
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Humans
;
Biocompatible Materials/metabolism*
;
Immunotherapy
;
Killer Cells, Natural/metabolism*
;
Immunotherapy, Adoptive
;
Neoplasms/therapy*
2.Preparation of silk fibroin/hyaluronic acid composite hydrogel based on thiol-ene click chemistry.
Leidan CHEN ; Mingqiang ZHONG ; Jinyi CHEN ; Zhenjie LIU ; Tairong KUANG ; Tong LIU ; Feng CHEN
Journal of Zhejiang University. Medical sciences 2023;52(3):285-295
OBJECTIVES:
To design and prepare silk fibroin/hyaluronic acid composite hydrogel.
METHODS:
The thiol modified silk fibroin and the double-bond modified hyaluronic acid were rapidly cured into gels through thiol-ene click polymerization under ultraviolet light condition. The grafting rate of modified silk fibroin and hyaluronic acid was characterized by 1H NMR spectroscopy; the gel point and the internal microstructure of hydrogels were characterized by rheological test and scanning electron microscopy; the mechanical properties were characterized by compression test; the swelling rate and degradation rate were determined by mass method. The hydrogel was co-cultured with the cells, the cytotoxicity was measured by the lactate dehydrogenase method, the cell adhesion was measured by the float count method, and the cell growth and differentiation on the surface of the gel were observed by scanning electron microscope and fluorescence microscope.
RESULTS:
The functional group substitution degrees of modified silk fibroin and hyaluronic acid were 17.99% and 48.03%, respectively. The prepared silk fibroin/hyaluronic acid composite hydrogel had a gel point of 40-60 s and had a porous structure inside the gel. The compressive strength was as high as 450 kPa and it would not break after ten cycles. The water absorption capacity of the composite hydrogel was 4-10 times of its own weight. Degradation experiments showed that the hydrogel was biodegradable, and the degradation rate reached 28%-42% after 35 d. The cell biology experiments showed that the cytotoxicity of the composite gel was low, the cell adhesion was good, and the growth and differentiation of the cells on the surface of the gel were good.
CONCLUSIONS
The photocurable silk fibroin/hyaluronic acid composite hydrogel can form a gel quickly, and has excellent mechanical properties, adjustable swelling rate and degradation degree, good biocompatibility, so it has promising application prospects in biomedicine.
Fibroins/chemistry*
;
Hydrogels/chemistry*
;
Hyaluronic Acid/chemistry*
;
Biocompatible Materials/chemistry*
;
Click Chemistry
;
Sulfhydryl Compounds
;
Silk/chemistry*
3.Progress in Application of Heparin Coating in Blood Contact Medical Devices.
Chinese Journal of Medical Instrumentation 2023;47(3):288-293
Blood compatibility is the main restriction of blood-contacting medical devices in clinical application, especially long-term blood-contacting medical devices will stimulate the immune defense mechanism of the host, resulting in thrombosis. Heparin anticoagulant coating links heparin molecules to the surface of medical device product materials, improves the compatibility between the material surface interface and the body, and reduces the host immune defense reactions. This study reviews the structure and biological properties of heparin, the market application status of heparin-coated medical products, the insufficiency and improvement of heparin coating, which can provide a reference for the application research of blood contact medical devices.
Humans
;
Heparin/chemistry*
;
Anticoagulants/chemistry*
;
Thrombosis
;
Coated Materials, Biocompatible/chemistry*
;
Surface Properties
4.Research Advances in Medical Materials and Products for Soft Tissue Repairs.
Jiaqi LI ; Rui WANG ; Qianqian HAN ; Xue SUN
Chinese Journal of Medical Instrumentation 2023;47(4):415-423
Soft tissue is an indispensable tissue in human body. It plays an important role in protecting the body from external physical, chemical or biological factors. Mild soft tissue injuries can self-heal, while severe soft tissue injuries may require related treatment. Natural polymers (such as chitosan, hyaluronic acid, and collagen) and synthetic polymers (such as polyethylene glycol and polylactic acid) exhibit good biocompatibility, biodegradability and low toxicity. It can be used for soft tissue repairs for antibacterial, hemostatic and wound healing purposes. Their related properties can be enhanced through modification or preparation of composite materials. Commonly used soft tissue repairs include wound dressings, biological patches, medical tissue adhesives, and tissue engineering scaffolds. This study introduces the properties, mechanisms of action and applications of various soft tissue repair medical materials, including chitosan, hyaluronic acid, collagen, polyethylene glycol and polylactic acid, and provides an outlook on the application prospects of soft tissue repair medical materials and products.
Humans
;
Biocompatible Materials/chemistry*
;
Chitosan/chemistry*
;
Hyaluronic Acid
;
Tissue Scaffolds/chemistry*
;
Collagen/chemistry*
;
Polymers/chemistry*
;
Polyethylene Glycols
;
Soft Tissue Injuries
5.Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds.
Yu Ke LI ; Mei WANG ; Lin TANG ; Yu Hua LIU ; Xiao Ying CHEN
Journal of Peking University(Health Sciences) 2023;55(1):44-51
OBJECTIVE:
To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes.
METHODS:
(1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method.
RESULTS:
Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs.
CONCLUSION
When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.
Tissue Scaffolds/chemistry*
;
Biocompatible Materials
;
Strontium/pharmacology*
;
Ions
;
Hydrogen-Ion Concentration
;
Tissue Engineering/methods*
;
Porosity
6.Applicatoin of chitosan-based hydrogel in oral tissue engineering.
Yujie WANG ; Jielin ZOU ; Mingxuan CAI ; Yifan WANG ; Jing MAO ; Xin SHI
Journal of Central South University(Medical Sciences) 2023;48(1):138-147
Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.
Chitosan/chemistry*
;
Tissue Engineering
;
Hydrogels/chemistry*
;
Biocompatible Materials/chemistry*
;
Cartilage
;
Tissue Scaffolds/chemistry*
7.Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs.
Qiang ZHANG ; K Tawiah GODFRED ; Yanjun ZHANG ; Xiaochun WEI ; Weiyi CHEN ; Quanyou ZHANG
Journal of Biomedical Engineering 2023;40(4):638-644
Mechanical signal transduction are crucial for chondrocyte in response to mechanical cues during the growth, development and osteoarthritis (OA) of articular cartilage. Extracellular matrix (ECM) turnover regulates the matrix mechanical microenvironment of chondrocytes. Thus, understanding the mechanotransduction mechanisms during chondrocyte sensing the matrix mechanical microenvironment can develop effective targeted therapy for OA. In recent decades, growing evidences are rapidly advancing our understanding of the mechanical force-dependent cartilage remodeling and injury responses mediated by TRPV4 and PIEZOs. In this review, we highlighted the mechanosensing mechanism mediated by TRPV4 and PIEZOs during chondrocytes sensing mechanical microenvironment of the ECM. Additionally, the latest progress in the regulation of OA by inflammatory signals mediated by TRPV4 and PIEZOs was also introduced. These recent insights provide the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA. This review will shed light on the pathogenesis of articular cartilage, searching clinical targeted therapies, and designing cell-induced biomaterials.
Chondrocytes
;
TRPV Cation Channels
;
Mechanotransduction, Cellular
;
Biocompatible Materials
;
Cartilage, Articular
8.Progress in preparation and application of sodium alginate microspheres.
Xuanyu LIU ; Yuhui WANG ; Ziwei LIANG ; Xiaojie LIAN ; Di HUANG ; Yinchun HU ; Yan WEI
Journal of Biomedical Engineering 2023;40(4):792-798
Sodium alginate (SA) is a kind of natural polymer material extracted from kelp, which has excellent biocompatibility, non-toxicity, biodegradability and abundant storage capacity. The formation condition of sodium alginate gel is mild, effectively avoiding the inactivation of active substances. After a variety of preparation methods, sodium alginate microspheres are widely used in the fields of biomaterials and tissue engineering. This paper reviewed the common methods of preparing alginate microspheres, including extrusion, emulsification, electrostatic spraying, spray drying and coaxial airflow, and discussed their applications in biomedical fields such as bone repair, hemostasis and drug delivery.
Alginates
;
Biocompatible Materials
;
Drug Delivery Systems
;
Microspheres
;
Plastic Surgery Procedures
9.Current Strategies of Surface Modifications to Polyurethane Biomaterials for Vascular Grafts.
Huai-Gu HUANG ; Tao XIANG ; Yue-Xin CHEN
Chinese Medical Sciences Journal 2023;38(4):279-285
As the number of patients suffering from cardiovascular diseases and peripheral vascular diseases rises, the constraints of autologous transplantation remain unavoidable. As a result, artificial vascular grafts must be developed. Adhesion of proteins, platelets and bacteria on implants can result in stenosis, thrombus formation, and postoperative infection, which can be fatal for an implantation. Polyurethane, as a commonly used biomaterial, has been modified in various ways to deal with the adhesions of proteins, platelets, and bacteria and to stimulate endothelium adhesion. In this review, we briefly summarize the mechanisms behind adhesions, overview the current strategies of surface modifications of polyurethane biomaterials used in vascular grafts, and highlight the challenges that need to be addressed in future studies, aiming to gain a more profound understanding of how to develop artificial polyurethane vascular grafts with an enhanced implantation success rate and reduced side effect.
Humans
;
Polyurethanes
;
Biocompatible Materials
;
Blood Vessel Prosthesis/adverse effects*
;
Cardiovascular Diseases
10.Research progress on medical devices of polyhydroxyalkanoate in orthopedics.
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):909-917
OBJECTIVE:
To review the research progress of natural biomaterial polyhydroxyalkanoate (PHA) in orthopedics.
METHODS:
The literature concerning PHA devices for bone defects, bone repair, and bone neoplasms, respectively, in recent years was extensively consulted. The three aspects of the advantages of PHA in bone repair, the preparation of PHA medical devices for bone repair and their application in orthopedics were discussed.
RESULTS:
Due to excellent biodegradability, biocompatibility, and potential osteoinduction, PHA is a kind of good bone repair material. In addition to the traditional PHA medical implants, the use of electrostatic spinning and three-dimensional printing can be designed to various functional PHA medical devices, in order to meet the orthopedic clinical demands, including the bone regeneration, minimally invasive bone tissue repair by injection, antibacterial bone repair, auxiliary establishment of three-dimensional bone tumor model, directed osteogenic differentiation of stem cells, etc.
CONCLUSION
At present, PHA is a hotspot of biomaterials for translational medicine in orthopedics. Although they have not completely applied in the clinic, the advantages of repair in bone defects have been gradually reflected in tissue engineering, showing an application prospect in orthopedics.
Orthopedics
;
Osteogenesis
;
Arthrodesis
;
Anti-Bacterial Agents
;
Biocompatible Materials
;
Polyhydroxyalkanoates/therapeutic use*

Result Analysis
Print
Save
E-mail