1.A New Perspective on the Prediction and Treatment of Stroke: The Role of Uric Acid.
Bingrui ZHU ; Xiaobin HUANG ; Jiahao ZHANG ; Xiaoyu WANG ; Sixuan TIAN ; Tiantong ZHAN ; Yibo LIU ; Haocheng ZHANG ; Sheng CHEN ; Cheng YU
Neuroscience Bulletin 2025;41(3):486-500
Stroke, a major cerebrovascular disease, has high morbidity and mortality. Effective methods to reduce the risk and improve the prognosis are lacking. Currently, uric acid (UA) is associated with the pathological mechanism, prognosis, and therapy of stroke. UA plays pro/anti-oxidative and pro-inflammatory roles in vivo. The specific role of UA in stroke, which may have both neuroprotective and damaging effects, remains unclear. There is a U-shaped association between serum uric acid (SUA) levels and ischemic stroke (IS). UA therapy provides neuroprotection during reperfusion therapy for acute ischemic stroke (AIS). Urate-lowering therapy (ULT) plays a protective role in IS with hyperuricemia or gout. SUA levels are associated with the cerebrovascular injury mechanism, risk, and outcomes of hemorrhagic stroke. In this review, we summarize the current research on the role of UA in stroke, providing potential targets for its prediction and treatment.
Humans
;
Uric Acid/metabolism*
;
Stroke/drug therapy*
;
Animals
;
Hyperuricemia/drug therapy*
;
Ischemic Stroke/blood*
;
Biomarkers/blood*
2.Therapeutic mechanism of Guizhi Gancao Decoction for heart failure: a network pharmacology-based analysis.
Yuxi ZHAO ; Xu ZHAO ; Qingnan ZHU ; Bingrui ZHU ; Zhenbin ZHANG ; Jing CHEN
Journal of Southern Medical University 2023;43(5):772-782
OBJECTIVE:
To predict the targets and pathways in the therapeutic mechanism of Guizhi Gancao Decoction (GZGCD) against heart failure (HF) based on network pharmacology.
METHODS:
The chemical components of GZGCD were analyzed using the databases including TCMSP, TCMID and TCM@Taiwan, and the potential targets of GZGCD were predicted using the SwissTargetPrediction database. The targets of HF were obtained using the databases including DisGeNET, Drugbank and TTD. The intersection targets of GZGCD and HF were identified using VENNY. Uniport database was used to convert the information, and the components-targets-disease network was constructed using Cytoscape software. The Bisogene plug-in, Merge plug-in, and CytoNCA plug-in in Cytoscape software were used for protein-protein interaction (PPI) analysis to acquire the core targets. Metascape database was used for GO and KEGG analysis. The results of network pharmacology analysis were verified with Western blot analysis. Three factors (PKCα, ERK1/2 and BCL2) were screened according to the degree value of network pharmacology results and the degree of correlation with heart failure process. The pentobarbtal sodium was dissolvein H9C2 cells treated with serum-free high glucose medium to simulate the ischemic anoxic environment of heart failure. The total proteins of myocardial cells were extracted. The protein contents of PKCα, ERK1/2 and BCL2 were determined.
RESULTS:
We identified a total of 190 intersection targets between GZGCD and HF using Venny database, involving mainly the circulatory system process, cellular response to nitrogen compounds, cation homeostasis, and regulation of the MAPK cascade. These potential targets were also involved in 38 pathways, including the regulatory pathways in cancer, calcium signal pathway, cGMP-PKG signal pathway, and cAMP signal pathway. Western blot analysis showed that in an in vitro H9C2 cell model of HF, treatment with GZGCD downregulated PKCα and ERK1/2 expressions and upregulated BCL2 expression.
CONCLUSION
The therapeutic mechanism of GZGCD for HF involves multiple targets including PRKCA, PRKCB, MAPK1, MAPK3, and MAPK8 and multiple pathways including the regulatory pathway in cancer and the calcium signaling pathway.
Humans
;
Protein Kinase C-alpha
;
Network Pharmacology
;
Heart Failure/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2

Result Analysis
Print
Save
E-mail