1.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
2.Bioequivalence study of pyrazinamide tablets in Chinese healthy subjects
Li-Bing YE ; Chong YAO ; Ying-Rong CHEN ; Lu-Yuan TONG ; Tao YANG ; Xiao LU ; Min XU ; Qiu-Yue JIN ; Shui-Xin YANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2236-2240
Objective To evaluate the bioequivalence and safety of two pyrazinamide tablets in healthy Chinese subjects.Methods An open,randomized,single-dose,two-sequence,two-cycle,double-cross trial design was used.All 48 healthy subjects(24 in fasting and 24 in fed trial)were randomized to receive a single oral dose of a 0.5 g pyrazinamide tablet(test or reference)per cycle.The plasma concentration of the drug was determined by liquid chromatography coupled to tandem mass spectrometry method.The pharmacokinetic parameters were calculated by WinNonlin v8.2,and the bioequivalence was evaluated by SAS 9.4.Results In the fasting group,the Cmax of the test and reference preparation of pyrazinamide tablets were(13.28±2.82)and(12.88±4.49)μg·mL-1,the AUC0-t were(139.17±26.58)and(138.63±28.92)h·μg·mL-1,the AUC0-∞ were(148.96±33.65)and(148.71±36.97)h·μg·mL-1 respectively.In the fed group,the Cmax of the test and reference preparation of pyrazinamide tablets were(11.89±1.96)and(11.99±1.92)μg·mL-1,the AUC0-t were(138.22±37.21)and(141.68±25.80)h·μg·mL-1,the AUC0-∞ were(152.20±32.41)and(151.04±28.05)h·μg·mL-,respectively.The 90%confidence intervals of Cmax,AUC0-t and AUC0-∞ geometric mean ratios of the test and reference preparation were all within 80.00%to 125.00%.The incidence of adverse events was 16.70%for both the test and reference preparation in the fasting group and 8.30%for both the test and reference preparation in the fed group,all of which were mild in severity.Conclusion The test and reference preparation of pyrazinamide tablets were bioequivalent,safe and well tolerated in healthy Chinese subjects under fasting and fed conditions.
3.Text analysis of Traditional Chinese Medicine scientific and technological innovation policy in China based on policy tools
Yue-Ming LI ; Li-Jun ZHUO ; Jing-Jia ZHU ; Hong-Bing TAO
Chinese Journal of Health Policy 2024;17(1):36-42
Objective:To analyze the key points and shortcomings of Traditional Chinese Medicine(TCM)science and technology innovation policy in China,and to provide reference for the subsequent policy optimization.Methods:Searching for TCM science and technology innovation policy texts released at the national level since 2007,and use the two-dimensional analysis framework for quantitative analysis.Results:Among 27 policies,In the X dimension,supply-based,environmental and demand-based policy tools respectively accounted for 48.98%,39.29%and 11.73%.In the Y dimension,the proportion of scientific and technological innovation and achievement transformation was the highest(29.03%);Promoting the development of integrated Chinese and Western medicine was the least used(1.08%).Conclusion:There is a structural imbalance in the application of policy tools,the distribution difference of policy objectives is significant,and the internal policy tools'usage is imbalanced regarding policy objectives.Suggestions:Optimize the internal structure of policy tools.Meanwhile,enhance the structure of policy objectives,and facilitate the dynamic integration and application of policy tools to achieve the policy objectives of scientific and technological innovation in TCM.
4.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
5.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
6.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
7.Screening and analysis of ferroptosis related genes in peripheral blood mononuclear cells of patients with systemic lupus erythematosus
Kang TAO ; Yuan TIAN ; Shifei LI ; Bing NI ; Xiaoqiang CHEN ; Zhifang ZHAI
Chinese Journal of Rheumatology 2024;28(2):93-98
Objective:To analyze the differentially expressed genes in PBMCs of patients with systemic lupus erythematosus (SLE) by bioinformatics methods screening and analyzing the key genes related to ferroptosis, and explore the possible mechanism of ferroptosis involved in the pathogenesis of SLE at the transcription level.Methods:The data sets and samples of healthy people (HC) and SLE patients who met the screening criteria were retrieved from the Gene Expression Omnibus (GEO), a sub-database of the National Center for Biotechnology Information (NCBI). The differentially expressed genes, GO enrichment analysis and KEGG pathway enrichment analysis were analyzed by GEO2R, R language and related software packages. The protein interaction network (PPI) of differential genes was analyzed by STRING, Cytoscape and other tools to explore the key genes and pathways. In addition, real-time quantitative reverse transcription PCR (RT-qPCR) was used to verify the expression of key genes. Mann-Whitney U test was used to compare the expression of key genes in PBMCs between the two groups. Spearman rank correlation analysis was used to explore the relationship between SLE disease activity and the level of key genes. Results:Six data sets were included in this study. A total of 166 genes related to ferroptosis were differentially expressed between SLE and HC groups. The differential genes were specifically expressed in alveolar macrophages, neutrophils, CD49 + cells and CD31 + cells. GO enrichment analysis and KEGG pathway enrichment analysis showed that the differentially expressed genes were mainly involved in multiple signaling pathways closely related to SLE, such as oxidative stress response, infection and TNF signaling pathway. Hub genes screened by different algorithms all suggested RELA as a key gene, and RT-qPCR confirmed that compared with the RELA gene expression level in the HC group [0.75(0.37,1.13)], the expression level in SLE group [2.02 (1.19,4.06)] was increased, the difference was statistically significant ( Z=-3.08, P=0.002), and was positively correlated with the corresponding SLEDAI score of SLE samples ( r=0.52, P=0.019). Conclusion:The ferroptosis of many immune cells, including alveolar macrophages and CD49 + NK cells, is involved in the pathogenesis of SLE. RELA may be involved in the ferroptosis of PBMCs in SLE through the NF-κB pathway.
8.Long-term efficacy of sequential surgery after immune combined with targeted therapy for initially unresectable hepatocellular carcinoma
Xuerui LI ; Junfeng LI ; Wenwen ZHANG ; Zhijun WANG ; Bingyang HU ; Haowen TANG ; Bing LIU ; Tao WAN ; Zhe LIU ; Zhanbo WANG ; Shichun LU
Chinese Journal of Hepatobiliary Surgery 2024;30(1):9-14
Objective:To assess the long-term outcome of sequential radical surgery after immune combined with targeted therapy for patients with initially unresectable hepatocellular carcinoma (HCC).Methods:Clinical data of 100 patients with initially unresectable HCC undergoing sequential radical surgery after immune combined with targeted therapy at the Faculty of Hepato-Pancreato-Biliary Surgery of Chinese PLA General Hospital from December 2018 to August 2023 were prospectively collected, including 87 males and 13 females, with a median age of 55 (24-73) years. The pre-treatment tumor staging was determined using the China liver cancer staging (CNLC). The efficacy of immune combined with targeted therapy was accessed using the modified response evaluation criteria in solid tumor (mRECIST). The cycles of immune combined with targeted therapy were analyzed. The tumor residual of resected tissue was analyzed through a standard pathological protocol. The prognosis was analyzed using the Kaplan-Meier method.Results:Upon initial diagnosis, there were 46 cases (46.0%) staged CNLC-Ⅲa and 40 (40.0%) staged CNLC-Ⅲb. There were also 14 cases (14.0%) staged CNLC-Ⅰb, Ⅱa, and Ⅱb who underwent immune combined with targeted therapy due to rupture of tumor or insufficient liver remnant. All patients received a median of 5 (3-28) cycles of immune combined with targeted therapy and underwent radical surgery after successful conversion. According to mRECIST, 14 (14.0%) were determined as complete remission, 63 (63.0%) as partial remission, 18 (18.0%) as stable disease, and 5 (5.0%) as disease progression. Of 24 (24.0%) were defined as pathologically complete remission by postoperative pathology. Furthermore, pathological tumor residue was less than 10% in 61 (61.0%) cases and less than 50% in 82 (82.0%) cases. The 1, 3, and 5 year-overall survival rates of patients were 98.0%, 83.1%, and 74.5%, respectively. The 1, 2 and 3 year-recurrence-free survival rates were 67.5%, 54.8%, and 49.6%, respectively.Conclusion:Sequential radical surgery after immune combined with targeted therapy benefits the long-term survival of patients with initially unresectable HCC.
9.Expert Consensus of Multidisciplinary Diagnosis and Treatment for Paroxysmal Nocturnal Hemoglobinuria(2024)
Miao CHEN ; Chen YANG ; Ziwei LIU ; Wei CAO ; Bo ZHANG ; Xin LIU ; Jingnan LI ; Wei LIU ; Jie PAN ; Jian WANG ; Yuehong ZHENG ; Yuexin CHEN ; Fangda LI ; Shunda DU ; Cong NING ; Limeng CHEN ; Cai YUE ; Jun NI ; Min PENG ; Xiaoxiao GUO ; Tao WANG ; Hongjun LI ; Rongrong LI ; Tong WU ; Bing HAN ; Shuyang ZHANG ; MULTIDISCIPLINE COLLABORATION GROUP ON RARE DISEASE AT PEKING UNION MEDICAL COLLEGE HOSPITAL
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1011-1028
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disease caused by abnormal expression of glycosylphosphatidylinositol (GPI) on the cell membrane due to mutations in the phosphatidylinositol glycan class A(PIGA) gene. It is commonly characterized by intravascular hemolysis, repeated thrombosis, and bone marrow failure, as well as multiple systemic involvement symptoms such as renal dysfunction, pulmonary hypertension, swallowing difficulties, chest pain, abdominal pain, and erectile dysfunction. Due to the rarity of PNH and its strong heterogeneity in clinical manifestations, multidisciplinary collaboration is often required for diagnosis and treatment. Peking Union Medical College Hospital, relying on the rare disease diagnosis and treatment platform, has invited multidisciplinary clinical experts to form a unified opinion on the diagnosis and treatment of PNH, and formulated the
10.Changes in the Non-targeted Metabolomic Profile of Three-year-old Toddlers with Elevated Exposure to Polycyclic Aromatic Hydrocarbons
Yang LI ; Dan LIN ; Qin Xiu ZHANG ; Xiu Guang JU ; Ya SU ; Qian ZHANG ; Ping Hai DUAN ; Sen Wei YU ; Ling Bing WANG ; Tao Shu PANG
Biomedical and Environmental Sciences 2024;37(5):479-493
Objective To investigate changes in the urinary metabolite profiles of children exposed to polycyclic aromatic hydrocarbons(PAHs)during critical brain development and explore their potential link with the intestinal microbiota. Methods Liquid chromatography-tandem mass spectrometry was used to determine ten hydroxyl metabolites of PAHs(OH-PAHs)in 36-month-old children.Subsequently,37 children were categorized into low-and high-exposure groups based on the sum of the ten OH-PAHs.Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to identify non-targeted metabolites in the urine samples.Furthermore,fecal flora abundance was assessed by 16S rRNA gene sequencing using Illumina MiSeq. Results The concentrations of 21 metabolites were significantly higher in the high exposure group than in the low exposure group(variable importance for projection>1,P<0.05).Most of these metabolites were positively correlated with the hydroxyl metabolites of naphthalene,fluorine,and phenanthrene(r=0.336-0.531).The identified differential metabolites primarily belonged to pathways associated with inflammation or proinflammatory states,including amino acid,lipid,and nucleotide metabolism.Additionally,these distinct metabolites were significantly associated with specific intestinal flora abundances(r=0.34-0.55),which were mainly involved in neurodevelopment. Conclusion Higher PAH exposure in young children affected metabolic homeostasis,particularly that of certain gut microbiota-derived metabolites.Further investigation is needed to explore the potential influence of PAHs on the gut microbiota and their possible association with neurodevelopmental outcomes.

Result Analysis
Print
Save
E-mail