1.Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice
Taotao HU ; Bing LIU ; Cheng CHEN ; Zongyin YIN ; Daohong KAN ; Jie NI ; Lingxiao YE ; Xiangbing ZHENG ; Min YAN ; Yong ZOU
Chinese Journal of Tissue Engineering Research 2025;29(7):1343-1349
BACKGROUND:Neuregulin 1 has been shown to be characterized in cell proliferation,differentiation,and vascular growth.Human amniotic mesenchymal stem cells are important seed cells in the field of tissue engineering,and have been shown to be involved in tissue repair and regeneration. OBJECTIVE:To construct human amniotic mesenchymal stem cells overexpressing neuregulin 1 and investigate their proliferation and migration abilities,as well as their effects on wound healing. METHODS:(1)Human amniotic mesenchymal stem cells were in vitro isolated and cultured and identified.(2)A lentivirus overexpressing neuregulin 1 was constructed.Human amniotic mesenchymal stem cells were divided into empty group,neuregulin 1 group,and control group,and transfected with empty lentivirus and lentivirus overexpressing neuregulin 1,or not transfected,respectively.(3)Edu assay was used to detect the proliferation ability of the cells of each group,and Transwell assay was used to detect the migration ability of the cells.(4)The C57 BL/6 mouse trauma models were constructed and randomly divided into control group,empty group,neuregulin 1 group,with 8 mice in each group.Human amniotic mesenchymal stem cells transfected with empty lentivirus or lentivirus overexpressing neuregulin-1 were uniformly injected with 1 mL at multiple local wound sites.The control group was injected with an equal amount of saline.(5)The healing of the trauma was observed at 1,7,and 14 days after model establishment.Histological changes of the healing of the trauma were observed by hematoxylin-eosin staining.The expression of CD31 on the trauma was observed by immunohistochemistry. RESULTS AND CONCLUSION:(1)Human amniotic mesenchymal stem cells overexpressing neuregulin-1 were successfully constructed.The mRNA and protein expression of intracellular neuregulin 1 was significantly up-regulated compared with the empty group(P<0.05).(2)The overexpression of neuregulin 1 promoted the migratory ability(P<0.01)and proliferative ability of human amniotic mesenchymal stem cells(P<0.05).(3)Human amniotic mesenchymal stem cells overexpressing neuregulin 1 promoted wound healing in mice(P<0.05)and wound angiogenesis(P<0.05).The results showed that overexpression of neuregulin 1 resulted in an increase in the proliferative and migratory capacities of human amniotic mesenchymal stem cells,significantly promoting wound healing and angiogenesis.
2.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
3.Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis.
Jing-Cheng WANG ; Hong-Bing SUN ; Teng LIU ; Wen-Tao ZHU ; Hong-Lan WANG ; Yi ZHOU ; Wei-Yan WANG ; Ping YANG ; Shun-Yuan JIANG
China Journal of Chinese Materia Medica 2025;50(14):3878-3886
To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.
Chromatography, High Pressure Liquid/methods*
;
Apiaceae/chemistry*
;
Entropy
;
Chemometrics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Principal Component Analysis
;
Quality Control
4.Expert consensus on imaging diagnosis and analysis of early correction of childhood malocclusion.
Zitong LIN ; Chenchen ZHOU ; Ziyang HU ; Zuyan ZHANG ; Yong CHENG ; Bing FANG ; Hong HE ; Hu WANG ; Gang LI ; Jun GUO ; Weihua GUO ; Xiaobing LI ; Guangning ZHENG ; Zhimin LI ; Donglin ZENG ; Yan LIU ; Yuehua LIU ; Min HU ; Lunguo XIA ; Jihong ZHAO ; Yaling SONG ; Huang LI ; Jun JI ; Jinlin SONG ; Lili CHEN ; Tiemei WANG
International Journal of Oral Science 2025;17(1):21-21
Early correction of childhood malocclusion is timely managing morphological, structural, and functional abnormalities at different dentomaxillofacial developmental stages. The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion. This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence, aiming to provide general guidance on appropriate imaging examination selection, comprehensive and accurate imaging assessment for early orthodontic treatment patients.
Humans
;
Malocclusion/diagnostic imaging*
;
Child
;
Consensus
6.Anti-COVID-19 mechanism of Anoectochilus roxburghii liquid based on network pharmacology and molecular docking
Jin ZHU ; Yan-bin WU ; De-fu HUANG ; Bing-ke BAI ; Xu-hui HE ; Dan JIA ; Cheng-jian ZHENG
Acta Pharmaceutica Sinica 2024;59(3):633-642
italic>Anoectochilus roxburghii liquid (spray, a hospital preparation of Wu Mengchao Hepatobiliary Hospital of Fujian Medical University) has shown a good clinical treatment effect during the COVID-19 pandemic, but its material basis and mechanism of action are still unclear. In this study, network pharmacology and molecular docking methods were used to predict the molecular mechanism of
7.Application Progress of Electrochemical Methods in Quality Control of Traditional Chinese Medicine
Yan-Bing PAN ; IHSAN AWAIS ; Min SHI ; Wen-Wen MA ; MURTAZA GHULAM ; Ke-Fei HU ; Jun LI ; Xian-Ju HUANG ; Han CHENG
Chinese Journal of Analytical Chemistry 2024;52(1):22-34
The quality control of traditional Chinese medicine(TCM)is the core issue to ensure the modernization,industrialization and internationalization of TCM.Compared with other detection methods,electrochemical analysis method has many advantages such as high sensitivity,fast detection speed and low cost,making it an important means of quality control for TCM and having broad development prospects.This article reviewed the research progress of electrochemical methods in quality control of TCM in recent years,discussed the application of electrochemical fingerprinting technique in identification of TCM,and comprehensively summarized the application of electrochemical technology in analyzing effective components and harmful substances in TCM,including flavonoids,alkaloids,quinones,glycosides,heavy metals and pesticide residues.Finally,the development prospects of electrochemical methods in the field of quality control of TCM were discussed.
8.Detection of Haptoglobin by Surface-Enhanced Raman Scattering Based on the Shift of Characteristic Peak
Si-Qi YUE ; Zhan-Hao MO ; Jun-Qi ZHAO ; Xin QI ; Ling JIN ; Can-Can CUI ; Cheng-Yan HE ; Bing ZHAO
Chinese Journal of Analytical Chemistry 2024;52(2):231-239,中插11-中插13
Acute cerebral infarction(ACI)has the characteristics of onset nasty and high mortality,and thus the rapid determination of the occurrence and development of ACI plays a key role in the diagnosis,treatment and prognosis of ACI patients.It has shown that the serum level of human haptoglobin(Hp)is related to ACI.In this study,surface enhanced Raman scattering(SERS)combined with immune recognition was applied to establish a quantitative analysis method for serum Hp.Firstly,the SERS substrate of silver nanoparticles was prepared on silicon wafer,and 4-mercaptobenzoic Acid(MBA)was used as a Raman probe by forming Ag—S bond and connecting it on the surface of nanoparticles.The carboxyl group of MBA was linked to amino group of self-made high-affinity antibody through forming CO—NH structure thus forming a SERS self-assembled chip of Hp(Ag/MBA/anti-Hp).Hp in serum could be specifically captured by antibodies on SERS substrate,which caused the shift of SERS characteristic peak of MBA.The results showed that there was a good linear relationship between the logarithm of Hp concentration and the SERS characteristic peak shift of MBA.The detection range was 1-1000 ng/mL(R2=0.988).The Hp concentrations in serum of 90 ACI patients were determined by this method,and the results were consistent with those of ELISA method,which proved the practicability and accuracy of this method.This method was highly specific,simple and convenient,which could realize the specific recognition and quantitative analysis of serum Hp,so as to be an effective means for clinical detection of serum Hp,thus providing a reference for the treatment and prognosis of ACI.
9.Expert consensus on the treatment method of endoscopic assisted curettage for cystic lesions of the jaw bone
Wei WU ; Pan CHEN ; Zhiquan HUANG ; Guiquan ZHU ; Yue HE ; Chunjie LI ; Min RUAN ; Lizheng QIN ; Bing YAN ; Cheng WANG ; Jingzhou HU ; Zhijun SUN ; Guoxin REN ; Wei SHANG ; Kai YANG ; Jichen LI ; Moyi SUN
Journal of Practical Stomatology 2024;40(3):301-308
Curettage is the main treatment method for oral maxillofacial cystic lesions,but simple curettage may easily damage surrounding structures such as adjacent teeth and nerves,leading to incomplete removal of the cyst and large jaw defects.The curettage assisted by endoscopy can provide a good surgical field for the surgeons,can clearly identify the important anatomical structure during the operation and can remove the cyst wall tissue as much as possible,thereby reducing the damage and reducing the recurrence rate of the lesion.This article combines the characteristics of maxillofacial surgery with clinical treatment experience,summarizes relevant literature from both domestic and international sources,and engages in discussions with experts in order to provide reference for the clinical treatment of jaw cystic lesions with endo-scope assisted curettage.
10.Three-dimensional breast cancer tumor models based on natural hydrogels:a review
SHU YAN ; LI BING ; MA HAILIN ; LIU JIAQI ; CHENG Yee YUEN ; LI XIANGQIN ; LIU TIANQING ; YANG CHUWEI ; MA XIAO ; SONG KEDONG
Journal of Zhejiang University. Science. B 2024;25(9):736-755
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide.According to the distribution of tumor tissue,breast cancer can be divided into invasive and non-invasive forms.The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body,forming metastatic breast cancer.Drug resistance and distant metastasis are the main causes of death from breast cancer.Research on breast cancer has attracted extensive attention from researchers.In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening.The tumor microenvironment consists of cancer cells and various types of stromal cells,including fibroblasts,endothelial cells,mesenchymal cells,and immune cells embedded in the extracellular matrix.The extracellular matrix contains fibrin proteins(such as types Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅵ,and Ⅹcollagen and elastin)and glycoproteins(such as proteoglycan,laminin,and fibronectin),which are involved in cell signaling and binding of growth factors.The current traditional two-dimensional(2D)tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo.Therefore,in recent years,research on three-dimensional(3D)tumor models has gradually increased,especially 3D bioprinting models with high precision and repeatability.Compared with a 2D model,the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment.Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments.Acellular matrix,gelatin,sodium alginate,and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection.Here,we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models,as a reference for research in the field of breast cancer.

Result Analysis
Print
Save
E-mail