1.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis
2.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
3.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis
4.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
5.Effects of vecuronium bromide down-regulation of lncRNA FGD5-AS1 on the proliferation and apoptosis of gastric cancer cell HGC-27
Bin FU ; Ke ZHANG ; Xing LIU ; Chuan-Xing DAI ; Zu-Qi CHEN ; De-Liang QIU
The Chinese Journal of Clinical Pharmacology 2024;40(2):205-209
Objective To investigate the effect of vecuronium bromide on the malignant biological behavior of gastric cancer cells and its molecular mechanism.Methods Gastric cancer cells HGC-27 were divided into control group,experimental-L,-M,-H groups,si-NC group,si-FGD5-AS1 group,pcDNA-FGD5-AS1 group,pcDNA group,experimental-H+pcDNA group,experimental-H+pcDNA-FGD5-AS1 group.The control group was cultured conventionally;experimental-L,-M,-H groups were treated with 5,10 and 20μmol·mL-1 vecuronium bromide,respectively;si-FGD5-AS1 group and the si-NC group were transfected with lncRNA FGD5-AS1 interference expression vector and negative control plasmid,respectively;pcDNA-FGD5-AS1 group and pcDNA group were transfected with lncRNA FGD5-AS1 overexpression vector and negative control plasmid,respectively;lncRNA FGD5-AS1 overexpression vector and negative control plasmid were transfected into HGC-27 cells in the experimental-H+pcDNA-FGD5-AS1 group and experimental-H+pcDNA group,and then treated with 20 μmuol·mL-1 vecuronium bromide.Methyl thiazolyl tetrazolium(MTT),flow cytometry and real-time fluorescent quantitative polymerase chain reaction(RT-qPCR)were applied to dectect cell viability,apoptosis and lncRNA FGD5-AS1 expression.Results The cell activity of control group,experimental-L,-M,-H groups,si-NC group,si-FGD5-AS1 group,pcDNA group,PCDNA-FGD5-AS1 group,experimental-H+pcDNA group and experimental-H+PCDNA-FGD5-AS1 group were 1.31±0.07,0.58±0.03,1.31±0.06,0.51±0.03,1.29±0.08,1.68±0.15,0.59±0.03 and 1.16±0.06;the apoptosis rates were(6.49±0.44)%,(23.52±0.98)%,(6.42±0.44)%,(26.75±0.97)%,(6.72±0.38)%,(2.56±0.19)%,(23.56±1.04)%and(11.65±0.47)%;the expression levels of lncRNA FGD5-AS1 were 1.00±0.05,0.37±0.02,0.99±0.05,0.21±0.02,1.00±0.03,2.98±0.12,0.38±0.02 and 0.87±0.05,respectively.The above indexes were compared with the control group and experimental-H group,those in the si-FGD5-AS1 group were compared with the si-NC group,those in the pcDNA-FGD5-AS1 group were compared with the pcDNA group,and those in the experimental-H+pcDNA-FGD5-AS1 group were compared with the experimental-H+pcDNA group,the differences were statistically significant(all P<0.05).Conclusion Vecuronium bromide may inhibit the proliferation of HGC-27 cells and promote cell apoptosis by down-regulating lncRNA FGD5-AS1.
6.Effects of hydroxysafflor yellow A on autophagy in bEnd.3 cells after oxygen-glucose deprivation
Yao-Yao DAI ; Meng-Qi SHU ; Ru-Heng WEI ; Zhu-Yue MIAO ; Zhi-Bin DING ; Dong MA ; Jian-Jun HUANG ; Li-Juan SONG ; Cun-Gen MA
The Chinese Journal of Clinical Pharmacology 2024;40(12):1734-1738
Objective To explore the effect and mechanism of hydroxysafflor yellow A(HSYA)on autophagy in bEnd.3 cells after oxygen-glucose deprivation(OGD).Methods The bEnd.3 cells were divided into normal group(conventional culture),model group(OGD model),HSYA group(OGD model+75 μmol·L-1 HSYA),3-methyladenine(3MA)group(5 mmol·L-1 3MA+OGD model)and 3 MA+HSYA group(5 mmol·L-1 3 MA+OGD model+75 μmol·L-1 HSYA).The level of apoptosis was determined by TUNEL fluorescence staining;Western blot was used to detect the expression of autophagy,blood brain barrier(BBB)related proteins;real time fluorescence quantitative polymerase chain reaction method for determining the expression of sirtuin-1(SIRT1)and forkhead box protein O3a(FOXO3A)mRNA.Results In the normal group,model group,HSYA group,3MA group and 3MA+HSYA group,the positive cells selected for TUNEL staining were 5.00±1.00,28.00±2.00,21.00±3.00,35.33±2.51 and 29.67±2.52;the expression levels of microtubule-associated protein 1 light chain 3-Ⅱ/-Ⅰ(LC3-Ⅱ/-Ⅰ)were 0.90±0.20,1.34±0.10,1.95±0.14,0.76±0.15 and 1.14±0.09;sequestosome 1(P62)were 0.99±0.02,0.60±0.02,0.38±0.01,0.67±0.04 and 0.54±0.01;occludin were 1.39±0.17,0.62±0.15,1.00±0.09,0.40±0.13 and 0.80±0.15;zonula occludens-1(ZO-1)were 1.63±0.20,0.64±0.06,0.98±0.14,0.37±0.14 and 0.87±0.04;SIRT1 mRNA were 1.00±0.00,0.75±0.07,1.69±0.09,0.31±0.02 and 0.56±0.01;FOXO3A mRNA were 1.00±0.00,0.80±0.05,1.47±0.09,0.40±0.01 and 0.62±0.09,respectively.Significant differences were found between model group and normal group,HSYA group and model group,3MA+HSYA group and 3MA group(P<0.05,P<0.01,P<0.001).Conclusion HSYA may enhance autophagy levels in bEnd.3 cells after OGD through the SIRT1/FOXO3A pathway,inhibit cell apoptosis and alleviate BBB damage.
7.Effects of hawthorn leaves flavonoids on angiotensin Ⅱ-induced cardiac hypertrophy by regulating miR-21a-5p
Lin-Yan TIAN ; Ran ZHU ; Ju-Ping DAI ; Jia-Jia WANG ; Bin ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2182-2186
Objective To explore the effect and mechanism of hawthorn leaves flavonoids(HLF)on angiotensin Ⅱ(Ang Ⅱ)-induced myocardial hypertrophy.Methods The H9c2 cells were divided into control group(normal culture),model group(100 nmol·L-1 Ang Ⅱ for 24 h),experimental-L,-M,-H groups(received 100 nmol·L-1 Ang Ⅱ for 24 h,then treated with 25,50 and 100 mg·L-1 HLF for 24 h,respectively),anti-miR-NC and anti-miR-21a-5p groups(transfected with anti-miR-NC and anti-miR-21a-5p,then treated with 100 nmol·L-1 Ang Ⅱ for 24 h),miR-NC+high-dose and miR-21a-5p+high-dose group(transfected with miR-NC and miR-21a-5p mimics,then treated with 100 nmol·L-1 Ang Ⅱ for 24 h+100 mg·L-1 HLF for 24 h).The cell viability was detected by cell counting kit-8.The cell apoptosis was measured by flow cytometry.The expression levels of miR-21a-5p was assessed by quantitative real-time polymerase chain reaction.The expression levels of cyclooxygenase-2(COX2)and prostaglandin E2(PGE2)was measured by Western blot.Results The cell viabilities of control,model group experimental-H groups were 1.03±0.09,0.51±0.05 and 0.93±0.08;cell apoptosis rates were(7.69±0.61)%,(23.04±1.82)%and(9.43±0.71)%;the expression levels of miR-21a-5p were 1.00±0.09,2.43±0.18 and 1.09±0.08;the relative expression levels of COX2 protein were 0.42±0.03,0.85±0.08 and 0.40±0.04;the relative expression levels of PGE2 protein were 0.34±0.03,0.75±0.07 and 0.35±0.03;the differences of above indexes were statistically significant between the model group and the control and experimental-H groups(all P<0.05).The cell viabilities of anti-miR-NC,anti-miR-21a-5p,miR-NC+high dose and miR-21a-5p+high dose groups were 0.52±0.04,1.12±0.08,0.94±0.09 and 0.57±0.04;the cell apoptosis rates were(23.04±1.82)%,(9.86±0.73)%,(9.47±0.64)%and(24.96±1.94)%;the expression levels of miR-21a-5p were 1.00±0.10,0.43±0.04,1.00±0.09 and 2.12±0.18;the relative expression levels of COX2 protein were 0.86±0.05,0.39±0.04,0.41±0.03 and 0.78±0.07;the relative expression levels of PGE2 protein were 0.74±0.06,0.38±0.07,0.36±0.02 and 0.71±0.05.Compared the anti-miR-21a-5p group with the anti-miR-NC group,compared the miR-21a-5p+high-dose group with the miR-NC+high-dose group,the differences of above indexes were statistically significant(all P<0.05).Conclusion HLF can inhibit Ang Ⅱ-induced myocardial hypertrophy by regulating the expression of miR-21a-5p and COX2/PGE2 pathway.
8.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.
9.Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage
Yingxin TU ; Yilan JI ; Fei WANG ; Dongming YANG ; Dongdong WANG ; Zhixin SUN ; Yuexin DAI ; Yanji WANG ; KAN GUANGHAN ; Bin WU ; Deming ZHAO ; Lifeng YANG
Laboratory Animal and Comparative Medicine 2024;44(5):475-486
Objective To establish a weightlessness simulation animal model using miniature pigs, leveraging the characteristic of multiple systems’ tissue structures and functions similar to those of humans, and to observe pathophysiological changes, providing a new method for aerospace research. Methods Nine standard-grade miniature pigs were selected and randomly divided into an experimental group (n=7) and a control group (n=2). The experimental group was fixed using customized metal cages, with canvas slings suspending their hind limbs off the ground, and the body positioned at a -20° angle relative to the ground to simulate unloading for 30 days (24 hours a day). Data on body weight, blood volume, and blood biochemistry indicators were collected at different time points for statistical analysis of basic physiological changes. After the experiment, the miniature pigs were euthanized and tissue samples were collected for histopathological observation of the cardiovascular, skeletal and muscle systems HE and Masson staining. Statistical analysis was also conducted on the thickness of arterial vessels and the diameter of skeletal muscle fibers. Additionally, western blotting was employed to detect the expression levels of skeletal muscle atrophy-related proteins, including muscle-specific RING finger protein 1 (MuRf-1) and muscle atrophy F-box (MAFbx, as known as Atrogin-1), while immunohistochemistry was used to detect the expression of glial fibrillary acidic protein (GFAP), an indicator of astrocyte activation in the brain, reflecting the pathophysiological functional changes across systems. Results After hindlimb unloading, the experimental group showed significant decreases in body weight (P<0.001) and blood volume (P<0.01). During the experiment, hemoglobin, hematocrit, and red blood cell count levels significantly decreased (P<0.05) but gradually recovered. The expression levels of alanine aminotransferase and γ-glutamyltransferase initially decreased (P<0.05) before rebounding, while albumin significantly decreased (P<0.001) and globulin significantly increased (P<0.01). Creatinine significantly decreased (P<0.05). The average diameter of gastrocnemius muscle fibers in the experimental group significantly shortened (P<0.05), with a leftward shift in the distribution of muscle fiber diameters and an increase in small-diameter muscle fibers. Simultaneously, Atrogin-1 expression in the gastrocnemius and paravertebral muscles significantly increased (P<0.05). These changes are generally consistent with the effects of weightlessness on humans and animals in space. Furthermore, degenerative changes were observed in some neurons of the cortical parietal lobe, frontal lobe, and hippocampal regions of the experimental group, with a slight reduction in the number of Purkinje cells in the cerebellar region, and a significant enhancement of GFAP-positive signals in the hippocampal area (P<0.05). Conclusion Miniature pigs subjected to a -20° angle hind limb unloading for 30 days maybe serve as a new animal model for simulating weightlessness, applicable to related aerospace research.
10.Factors affecting nosocomial death in elderly patients with COVID-19 and construction of a risk predictive model
Jingrong DAI ; Bao XIAO ; Lin LI ; Jiangying HU ; Bin LIU
Basic & Clinical Medicine 2024;44(1):92-97
Objective To study the factors affecting hospital death in elderly patients with novel coronavirus infec-tion/disease 2019(COVID-19),and to build a risk prediction model.Methods According to the diagnostic criteria of Diagnosis and Treatment Protocol for COVID-19 Infection(Trial 10th Edition).Totally 775 elderly patients(≥60 years old)diagnosed as COVID-19 infection in the emergency department and fever clinic of the First Hospital of Changsha were selected as the research objects.General data and serum biomarkers of patients were collected.After treatment,the patients'data were divided into survival group and hospital death group.Binary Logistic regres-sion was used to screen the independent influencing factors of death,and ROC curve was used to analyze the pre-dictive value of related indicators on hospital death.Results After treatment,712 patients(91.9%)survived and 63 patients(8.3%)died in hospital.Binary Logistic regression analysis showed that:≥90 years old[OR=5.065,95%CI(1.427,17.974)],type 2 diabetes mellitus[OR= 3.757,95%CI(1.649,8.559)],COPD[OR= 5.625,95%CI(2.357,13.421)],monocyte ratio[OR=0.908,95%CI(0.857,0.963)],plasma fibringen[OR=1.376,95%CI(1.053,1.800)]and lactate dehydrogenase[OR=1.005,95%CI(1.001,o1.008)]were independent factors of in-hospital death(P<0.05).The predictive value of diabetes mellitus+COPD+age+monocyte ratio+plasma fibrinogen+lactate dehydrogenase was proved in hospital death from COVID-19 infected patients:the area under the curve(AUC)was 0.883(95%CI:0.827,0.940,P<0.001),the critical value≥0.710 suggested the risk of death in hospital,the specificity was 0.851,the sensitivity was 0.857.Conclusions The hospital mortality of the elderly after COVID-19 infection is higher and closely related to type 2 diabetes,COPD,monocyte ratio,plasma fibrinogen and lactate dehydrogenase.

Result Analysis
Print
Save
E-mail