1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Working practices in eliminating the public health crisis caused by viral hepatitis in Hainan Province of China
Weihua LI ; Changfu XIONG ; Taifan CHEN ; Bin HE ; Dapeng YIN ; Xuexia ZENG ; Feng LIN ; Biyu CHEN ; Xiaomei ZENG ; Biao WU ; Juan JIANG ; Lu ZHONG ; Yuhui ZHANG
Journal of Clinical Hepatology 2025;41(2):228-233
In 2022, Hainan provincial government launched the project for the prevention and control of viral hepatitis with the goals of a hepatitis B screening rate of 90%, a diagnostic rate of 90%, and a treatment rate of 80% among people aged 18 years and above by the year 2025, and the main intervention measures include population-based prevention, case screening, antiviral therapy, and health management. As of December 31, 2024, a total of 6.875 million individuals in the general population had been screened for hepatitis B, with a screening rate of 95.6%. A total of 184 710 individuals with positive HBsAg were identified, among whom 156 772 were diagnosed through serological reexamination, resulting in a diagnostic rate of 84.9%. A total of 50 742 patients with chronic hepatitis B were identified, among whom 42 921 had hepatitis B-specific health records established for health management, with a file establishment rate of 84.6%. A total of 31 553 individuals received antiviral therapy, with a treatment rate of 62.2%. A total of 2.503 million individuals at a high risk of hepatitis C were screened, among whom 4 870 tested positive for HCV antibody and 3 858 underwent HCV RNA testing, resulting in a diagnostic rate of 79.2%, and 1 824 individuals with positive HCV RNA were identified, among whom 1 194 received antiviral therapy, with a treatment rate of 65.5%. In addition, 159 301 individuals with negative HBsAg and anti-HBs and an age of 20 — 40 years were inoculated with hepatitis B vaccine free of charge. Through the implementation of the project for the prevention and control of viral hepatitis, a large number of hepatitis patients have been identified, treated, and managed in the province within a short period of time, which significantly accelerates the efforts to eliminate the crisis of viral hepatitis.
3.Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
Xiaotian WANG ; Yaning BIAO ; Yixin ZHANG ; Jian CHEN ; Ya GAO ; Yufang ZHANG ; Muqing ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):30-38
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.
4.Clinical study on the treatment of chronic atrophic gastritis with spleen and stomach weakness syndrome by Piwei Peiyuan Pill combined with moxibustion
Kairui WU ; Yu YE ; Bei PEI ; Biao SONG ; Yi ZHANG ; Tingting LI ; Qi YANG ; Yun LIU ; Xuejun LI
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):280-290
Objective:
To determine the clinical efficacy and mechanism of Piwei Peiyuan Pill (PPP) combined with moxibustion for treating patients with chronic atrophic gastritis (CAG) with spleen and stomach weakness syndrome.
Methods:
Ninety-six CAG patients with spleen and stomach weakness syndrome who met the inclusion and exclusion criteria were enrolled at the Department of Spleen and Stomach Diseases of the Second Affiliated Hospital of Anhui University of Chinese Medicine from June 2022 to December 2023. The patients were randomly divided into a control, a Chinese medicine, and a combined group using a random number table method, with 32 cases in each group (two cases per group were excluded). The control group was treated with rabeprazole combined with folic acid tablets (both thrice daily), the Chinese medicine group was treated with PPP (8 g, thrice daily), and the combined group was treated with moxa stick moxibustion (once daily) on the basis of the Chinese medicine group for 12 consecutive weeks. Gastric mucosa atrophy in the three groups was observed before and after treatment. The gastric mucosal pathological score was evaluated. The Patient Reported Outcome (PRO) scale was used to evaluate the patients′ physical and mental health status and quality of life.An enzyme-linked immunosorbent assay was used to detect serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-10, IL-37, and transforming growth factor (TGF)-β levels in each group. Real-time fluorescence PCR was used to detect the relative expression levels of signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) mRNA in each group. Western blotting was used to detect the relative expression levels of proteins related to the STAT3/mTOR signaling pathway, and the adverse drug reactions and events were recorded and compared.
Results:
There was no statistical difference in age, gender, disease duration, family history of gastrointestinal tumors, alcohol consumption history, and body mass index among the three groups of patients.The total therapeutic efficacy rates of the control, Chinese medicine, and combined groups in treating gastric mucosal atrophy were 66.67% (20/30), 86.67% (26/30), and 90.00% (27/30), respectively (P<0.05). Compared to before treatment, the pathological and PRO scale scores of gastric mucosa in each group decreased after treatment, and TNF-α, IL-1β, IL-37, and TGF-β levels decreased. The relative STAT3 and mTOR mRNA expression levels, as well as the relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels decreased (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the control group, the pathological score of gastric mucosa, PRO scale score, TNF-α, IL-1β, IL-37, TGF-β content, relative STAT3 and mTOR mRNA expression levels, and relative STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels in the Chinese medicine and combined groups after treatment were reduced (P<0.05), whereas the IL-4 and IL-10 levels increased (P<0.05). After treatment, compared to the Chinese medicine group, the combined group showed a decrease in relative STAT3, mTOR mRNA expression levels, and STAT3, p-STAT3, mTOR, and p-mTOR protein expression levels (P<0.05).
Conclusion
The combination of PPP and moxibustion may regulate the inflammatory mechanism of the body by inhibiting the abnormal activation of the STAT3/mTOR signaling pathway, upregulating related anti-inflammatory factor levels, downregulating pro-inflammatory factor expression, and increasing related repair factor expression, thereby promoting the recovery of atrophic gastric mucosa, reducing discomfort symptoms, and improving the physical and mental state of CAG patients with spleen and stomach weakness syndrome.
5.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
6.Danggui Shaoyaosan Regulates Nrf2/SLC7A11/GPX4 Signaling Pathway to Inhibit Ferroptosis in Rat Model of Non-alcoholic Fatty Liver Disease
Xinqiao CHU ; Yaning BIAO ; Ying GU ; Meng LI ; Tiantong JIANG ; Yuan DING ; Xiaping TAO ; Shaoli WANG ; Ziheng WEI ; Zhen LIU ; Yixin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):35-42
ObjectiveTo investigate the effect of Danggui Shaoyaosan on ferroptosis in the rat model of non-alcoholic fatty liver disease (NAFLD) and explore the underlying mechanism based on the nuclear factor E2-related factor 2 (Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe sixty SD rats were randomly grouped as follows: control, model, Yishanfu (0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, and 9.76 g·kg-1, respectively) Danggui Shaoyaosan. A high-fat diet was used to establish the rat model of NAFLD. After 12 weeks of modeling, rats were treated with corresponding agents for 4 weeks. Then, the body weight and liver weight were measured, and the liver index was calculated. At the same time, serum and liver samples were collected. The levels or activities of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fe2+ in the serum and TC, TG, free fatty acids (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and Fe2+ in the liver were measured. Hematoxylin-eosin staining and oil red O staining were employed to observe the pathological changes in the liver. Immunofluorescence was used to assess the reactive oxygen species (ROS) content in the liver. Mitochondrial morphology was observed by transmission electron microscopy. The protein levels of Nrf2, SLC7A11, GPX4, transferrin receptor 1 (TFR1), and divalent metal transporter 1 (DMT1) in the liver were determined by Western blot. ResultsCompared with the control group, the model group showed increases in the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), and decreases in the activities of SOD, GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.05, P<0.01). Meanwhile, the liver tissue in the model group presented steatosis, iron deposition, mitochondrial shrinkage, and blurred or swollen mitochondrial cristae. Compared with the model group, all doses of Danggui Shaoyaosan reduced the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), while increasing the activities of SOD and GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.01). Furthermore, Danggui Shaoyaosan alleviated steatosis, iron deposition, and mitochondrial damage in the liver. ConclusionDanggui Shaoyaosan may inhibit lipid peroxidation and ferroptosis by activating the Nrf2/SLC7A11/GPX4 signaling pathway to treat NAFLD.
7.Investigation on an outbreak of acute hemorrhagic conjunctivitis at a boarding middle school in Guangdong Province
Chinese Journal of School Health 2025;46(6):878-882
Objective:
To investigate the characteristics and risk factors of an outbreak of acute hemorrhagic conjunctivitis (AHC) in a boarding middle school in Guangdong Province, in order to provide a scientific evidence for effective prevention and control of campus AHC outbreaks.
Methods:
From September 1st to 28th 2023, case identification was conducted among 559 students and 60 faculty members using standardized definition. Descriptive analysis was conducted on the three distrubution patterns of the outbreak. Questionnaires were designed, and a case-control study was adopted to analyze the possible risk factors of the disease transmission. The propensity score matching (PSM) method was used to control the difference of baseline data.
Results:
A total of 269 cases of AHC were identified, with an attack rate of 43.46%. The pathogen was confirmed as Coxsackie virus A24 variant (CA24v). Among these, 264 cases were students (attack rate of 47.23%) and 5 were staff (attack rate of 8.33%). A total of 153 pairs of PSM were successfully matched. After PSM matching, there were no statistically significant differences in gender, grade and class between the case group and the control group ( χ 2=0.12, 5.41, 11.24, P >0.05). The results of multivariate Logistic regression analysis showed that middle school students whose towels contacted with others ( OR =1.81), and direct contact with other AHC cases recently ( OR =4.89) were more likely to have AHC; while wearing glasses ( OR =0.43) and frequent use of hand sanitizer ( OR = 0.37 ) were less likely to have AHC ( P <0.05).
Conclusion
The outbreak of AHC is caused by CA24v, demonstrating rapid spread and extensive impact within the school setting.
8.The impact of glycemic variability on diabetic complications and related mechanisms.
Jing-Yi LIU ; Qi AN ; Si-Qi ZHANG ; Biao YANG ; Ya-Qiong LI
Acta Physiologica Sinica 2025;77(5):925-938
Diabetes mellitus (DM) is a major global health issue, with glycated hemoglobin levels serving as the gold standard for evaluating glucose level control in DM patients. However, it has limitations in reflecting glucose oscillations (i.e. glycemic variability, GV). Increasing evidence suggests that GV is closely related to the progression of diabetes complications and patient prognosis. As people realize the importance of avoiding hypoglycemia while achieving target glycated hemoglobin levels in treatment, the clinical significance of GV becomes more obvious. This article systematically reviewed the concept and connotation of GV, summarized the latest research on its role in the complications of diabetes, and revealed the biochemical and pathophysiological abnormalities caused by excessive glycemic oscillation, aiming to provide a theoretical basis for the risk warning and early intervention of DM patients.
Humans
;
Blood Glucose/metabolism*
;
Diabetes Complications/physiopathology*
;
Glycated Hemoglobin/metabolism*
;
Hypoglycemia
;
Diabetes Mellitus, Type 2/complications*
9.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
10.Identification of terpenoid synthases family in Perilla frutescens and functional analysis of germacrene D synthase.
Pei-Na ZHOU ; Zai-Biao ZHU ; Lei XIONG ; Ying ZHANG ; Peng CHEN ; Huang-Jin TONG ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(10):2658-2673
Based on whole-genome identification of the TPS gene family in Perilla frutescens and screening, cloning, bioinformatics, and expression analysis of the synthetic enzyme for the insect-resistant component germacrene D, this study lays the foundation for understanding the biological function of the TPS gene family and the insect resistance mechanism in P. frutescens. This study used bioinformatics tools to identify the TPS gene family of P. frutescens based on its whole genome and predicted the physicochemical properties, systematic classification, and promoter cis-elements of the proteins. The relative content of germacrene D was detected in both normal and insect-infested leaves of P. frutescens, and the germacrene D synthase was screened and isolated. Gene cloning, bioinformatics analysis, and expression profiling were then performed. The results showed that a total of 99 TPS genes were identified in the genome, which were classified into the TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g subfamilies. Conserved motif analysis showed that the TPS in P. frutescens has conserved structural characteristics within the same subfamily. Promoter cis-element analysis predicted the presence of light-responsive elements, multiple hormone-responsive elements, and stress-responsive elements in the TPS family of P. frutescens. Transcriptome data revealed that most of the TPS genes in P. frutescens were highly expressed in the leaves. GC-MS analysis showed that the relative content of germacrene D significantly increased in insect-damaged leaves, suggesting that it may act as an insect-resistant component. The germacrene D synthase gene was screened through homologous protein binding gene expression and was found to belong to the TPS-a subfamily, encoding a 64.89 kDa protein. This protein was hydrophilic, lacked a transmembrane structure and signal peptide, and was predominantly expressed in leaves, with significantly higher expression in insect-damaged leaves compared to normal leaves. In vitro expression results showed that germacrene D synthase tended to form inclusion bodies. Molecular docking showed that farnesyl pyrophosphate(FPP) fell into the active pocket of the protein and interacted strongly with six active sites. This study provides a foundation for further research on the biological functions of the TPS gene family in P. frutescens and the molecular mechanisms underlying its insect resistance.
Perilla frutescens/chemistry*
;
Plant Proteins/chemistry*
;
Multigene Family
;
Sesquiterpenes, Germacrane/metabolism*
;
Alkyl and Aryl Transferases/chemistry*
;
Phylogeny
;
Gene Expression Regulation, Plant


Result Analysis
Print
Save
E-mail