1.Berberine targets the electron transport chain complex I and reveals the landscape of OXPHOS dependency in acute myeloid leukemia with IDH1 mutation.
Zhe HUANG ; Yunfu SHEN ; Wenjun LIU ; Yan YANG ; Ling GUO ; Qin YAN ; Chengming WEI ; Qulian GUO ; Xianming FAN ; Wenzhe MA
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):136-145
Metabolic reprogramming, a newly recognized trait of tumor biology, is an intensively studied prospect for oncology medicines. For numerous tumors and cancer cell subpopulations, oxidative phosphorylation (OXPHOS) is essential for their biosynthetic and bioenergetic functions. Cancer cells with mutations in isocitrate dehydrogenase 1 (IDH1) exhibit differentiation arrest, epigenetic and transcriptional reprogramming, and sensitivity to mitochondrial OXPHOS inhibitors. In this study, we report that berberine, which is widely used in China to treat intestinal infections, acted solely at the mitochondrial electron transport chain (ETC) complex I, and that its association with IDH1 mutant inhibitor (IDH1mi) AG-120 decreased mitochondrial activity and enhanced antileukemic effect in vitro andin vivo. Our study gives a scientific rationale for the therapy of IDH1 mutant acute myeloid leukemia (AML) patients using combinatory mitochondrial targeted medicines, particularly those who are resistant to or relapsing from IDH1mi.
Humans
;
Oxidative Phosphorylation
;
Berberine
;
Electron Transport
;
Mitochondria
;
Leukemia, Myeloid, Acute
;
Isocitrate Dehydrogenase
2.Anti-obesity and Gut Microbiota Modulation Effect of Astragalus Polysaccharides Combined with Berberine on High-Fat Diet-Fed Obese Mice.
Shi-Jun YUE ; Wen-Xiao WANG ; Lei ZHANG ; Juan LIU ; Wu-Wen FENG ; Huan GAO ; Yu-Ping TANG ; Dan YAN
Chinese journal of integrative medicine 2023;29(7):617-625
OBJECTIVE:
To investigate whether astragalus polysaccharides (APS) combined with berberine (BBR) can reduce high-fat diet (HFD)-induced obesity in mice.
METHODS:
Except for normal mice, 32 HFD-induced obese mice were randomized into HFD, APS (1,000 mg/kg APS), BBR (200 mg/kg BBR), and APS plus BBR (1,000 mg/kg APS plus 200 mg/kg BBR) groups, respectively. After 6-week treatment (once daily by gavage), the obesity phenotype and pharmacodynamic effects were evaluated by histopathological examination of epididymal fat, liver, and colon using hematoxylin-eosin staining and serum biochemical analyses by an automated chemistry analyzer. The feces were collected at the 12 th week, and taxonomic and functional profiles of gut microbiota were analyzed by 16S ribosomal ribonucleic acid (16S rRNA) sequencing.
RESULTS:
Compared with HFD group, the average body weight of APS plus BBR group was decreased (P<0.01), accompanied with the reduced fat accumulation, enhanced colonic integrity, insulin sensitivity and glucose homeostasis (P<0.05 or P<0.01). Importantly, APS combined with BBR treatment was more effective than APS or BBR alone in improving HFD-induced insulin resistance (P<0.05 or P<0.01). 16S rRNA sequence-based analysis of fecal samples demonstrated that APS combined with BBR treatment exhibited a better impact on HFD-induced gut microbiota dysbiosis, exclusively via the enriched abundances of Bacteroides, which corresponded to the large increase of predicted bacterial genes involved in carbohydrate metabolism.
CONCLUSION
APS combined with BBR may synergistically reduce obesity and modulate the gut microbiota in HFD-fed mice.
Mice
;
Animals
;
Diet, High-Fat
;
Berberine/therapeutic use*
;
Mice, Obese
;
RNA, Ribosomal, 16S/genetics*
;
Gastrointestinal Microbiome
;
Obesity/drug therapy*
;
Insulin Resistance
;
Mice, Inbred C57BL
3.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
4.Preparation of berberine-naringin dual drug-loaded composite microspheres and evaluation of their antibacterial-osteogenic properties.
Wei XIONG ; Lingmei YUAN ; Liangxia WANG ; Guowen QIAN ; Chaoyi LIANG ; Bin PAN ; Ling GUO ; Wenqiang WEI ; Xunxiang QIU ; Wenfang DENG ; Zhikui ZENG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(12):1505-1513
OBJECTIVE:
To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects.
METHODS:
The NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat's BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively.
RESULTS:
NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA ( P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres ( P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG ( P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA ( P>0.05).
CONCLUSION
NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.
Rats
;
Animals
;
Osteogenesis
;
Delayed-Action Preparations/pharmacology*
;
Microspheres
;
Berberine/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Escherichia coli
5.Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF.
Miyesaier ABUDUREYIMU ; Mingjie YANG ; Xiang WANG ; Xuanming LUO ; Junbo GE ; Hu PENG ; Yingmei ZHANG ; Jun REN
Frontiers of Medicine 2023;17(6):1219-1235
Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME ("two-hit" model) for 15 weeks. Diastolic function was assessed using echocardiography and noninvasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in "two-hit"-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e' ratio, decreased e' value and maximal velocity of re-lengthening (-dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in "two-hit" diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.
Male
;
Mice
;
Animals
;
Heart Failure/drug therapy*
;
Stroke Volume/physiology*
;
Ventricular Function, Left/physiology*
;
Berberine/therapeutic use*
;
Disease Models, Animal
;
Mitochondrial Dynamics
;
Myocardium
;
Homeostasis
6.Efficacy and safety of triple therapy containing berberine, amoxicillin, and vonoprazan for Helicobacter pylori initial treatment: A randomized controlled trial.
Shasha CHEN ; Weina SHEN ; Yuhuan LIU ; Qiang DONG ; Yongquan SHI
Chinese Medical Journal 2023;136(14):1690-1698
BACKGROUND:
With the development of traditional Chinese medicine research, berberine has shown good efficacy and safety in the eradication of Helicobacter pylori (H. pylori). The present study aimed to evaluate the efficacy and safety of triple therapy containing berberine, amoxicillin, and vonoprazan for the initial treatment of H. pylori.
METHODS:
This study was a single-center, open-label, parallel, randomized controlled clinical trial. Patients with H. pylori infection were randomly (1:1:1) assigned to receive berberine triple therapy (berberine 500 mg, amoxicillin 1000 mg, vonoprazan 20 mg, A group), vonoprazan quadruple therapy (vonoprazan 20 mg, amoxicillin 1000 mg, clarithromycin 500 mg, colloidal bismuth tartrate 220 mg, B group), or rabeprazole quadruple therapy (rabeprazole 10 mg, amoxicillin 1000 mg, clarithromycin 500 mg, colloidal bismuth tartrate 220 mg, C group). The drugs were taken twice daily for 14 days. The main outcome was the H. pylori eradication rate. The secondary outcomes were symptom improvement rate, patient compliance, and incidence of adverse events. Furthermore, factors affecting the eradication rate of H. pylori were further analyzed.
RESULTS:
A total of 300 H. pylori-infected patients were included in this study, and 263 patients completed the study. An intention-to-treat (ITT) analysis showed that the eradication rates of H. pylori in berberine triple therapy, vonoprazan quadruple therapy, and rabeprazole quadruple therapy were 70.0% (70/100), 77.0% (77/100), and 69.0% (69/100), respectively. The per-protocol (PP) analysis showed that the eradication rates of H. pylori in these three groups were 81.4% (70/86), 86.5% (77/89), and 78.4% (69/88), respectively. Both ITT analysis and PP analysis showed that the H. pylori eradication rate did not significantly differ among the three groups (P >0.05). In addition, the symptom improvement rate, overall adverse reaction rate, and patient compliance were similar among the three groups (P >0.05).
CONCLUSIONS
The efficacy of berberine triple therapy for H. pylori initial treatment was comparable to that of vonoprazan quadruple therapy and rabeprazole quadruple therapy, and it was well tolerated. It could be used as one choice of H. pylori initial treatment.
Humans
;
Amoxicillin/therapeutic use*
;
Helicobacter pylori
;
Anti-Bacterial Agents
;
Clarithromycin/therapeutic use*
;
Rabeprazole/therapeutic use*
;
Berberine/therapeutic use*
;
Bismuth
;
Helicobacter Infections/drug therapy*
;
Drug Therapy, Combination
;
Treatment Outcome
;
Proton Pump Inhibitors/therapeutic use*
7.Therapeutic effect of ursodeoxycholic acid-berberine supramolecular nanoparticles on ulcerative colitis based on supramolecular system induced by weak bond.
Shan GAO ; Feng GAO ; Jing-Wei KONG ; Zhi-Jia WANG ; Hao-Cheng ZHENG ; Xin-Qi JIANG ; Shu-Jing XU ; Shan-Lan LI ; Ming-Jun LU ; Zi-Qi DAI ; Fu-Hao CHU ; Bing XU ; Hai-Min LEI
China Journal of Chinese Materia Medica 2023;48(10):2739-2748
Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Ursodeoxycholic Acid/adverse effects*
;
Berberine/pharmacology*
;
Interleukin-6
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Colon
;
Nanoparticles
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Colitis/chemically induced*
8.Pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats.
Bing-Jie LI ; Wen-Jing GE ; Peng-Tao SHAN ; Hui-Sen WANG ; Ming LIU ; Geng-Sheng LI ; Rui-Feng LIANG
China Journal of Chinese Materia Medica 2023;48(7):1943-1950
This work aimed to investigate the differences of pharmacokinetics and tissue distribution of four alkaloids in Ermiao Pills and Sanmiao Pills in normal and arthritic model rats. The rat model of arthritis was established by injecting Freund's complete adjuvant, and ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) in the positive ion multiple reaction monitoring(MRM) mode was used for the determination of four alkaloids in plasma and tissues of normal and arthritic rats after administration of Ermiao Pills and Sanmiao Pills, respectively. The differences in pharmacokinetics and tissue distribution of the four active components were compared, and the effect of Achyranthis Bidentatae Radix on the major components of Sanmiao Pills was explored. This study established an UPLC-MS/MS for simultaneous determination of four alkaloids, and the specificity, linearity, accuracy, precision, and stability of this method all met the requirements. Pharmacokinetics study found that as compared with normal rats, the AUC and C_(max) of phellodendrine, magnoflorine, berberine and palmatine in model rats were significantly decreased after administration of Ermiao Pills, the clearance rate CL/F was significantly increased, and the distribution and tissue/plasma concentration ratio of the four alkaloids in the liver, kidney, and joint were significantly reduced. Achyranthis Bidentatae Radix increased the AUC of phellodendrine, berberine, and palmatine, reduced the clearance rate, and significantly increased the distribution of the four alkaloids in the liver, kidney, and joints in arthritic rats. However, it had no significant effect on the pharmacokinetics and tissue distribution of the four alkaloids in normal rats. These results suggest that Achyranthis Bidentatae Radix may play a guiding role in meridian through increasing the tissue distribution of effective components in Sanmiao Pills under arthritis states.
Rats
;
Animals
;
Berberine/pharmacokinetics*
;
Tissue Distribution
;
Chromatography, Liquid
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Alkaloids/pharmacokinetics*
;
Chromatography, High Pressure Liquid/methods*
;
Arthritis
9.Berberine might block colorectal carcinogenesis by inhibiting the regulation of B-cell function by Veillonella parvula.
Yun QIAN ; Ziran KANG ; Licong ZHAO ; Huimin CHEN ; Chengbei ZHOU ; Qinyan GAO ; Zheng WANG ; Qiang LIU ; Yun CUI ; Xiaobo LI ; Yingxuan CHEN ; Tianhui ZOU ; Jingyuan FANG
Chinese Medical Journal 2023;136(22):2722-2731
BACKGROUND:
Colorectal carcinogenesis and progression are related to the gut microbiota and the tumor immune microenvironment. Our previous clinical trial demonstrated that berberine (BBR) hydrochloride might reduce the recurrence and canceration of colorectal adenoma (CRA). The present study aimed to further explore the mechanism of BBR in preventing colorectal cancer (CRC).
METHODS:
We performed metagenomics sequencing on fecal specimens obtained from the BBR intervention trial, and the differential bacteria before and after medication were validated using quantitative polymerase chain reaction. We further performed ApcMin/+ animal intervention tests, RNA sequencing, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assays.
RESULTS:
The abundance of fecal Veillonella parvula ( V . parvula ) decreased significantly after BBR administration ( P = 0.0016) and increased through the development from CRA to CRC. Patients with CRC with a higher V. parvula abundance had worse tumor staging and a higher lymph node metastasis rate. The intestinal immune pathway of Immunoglobulin A production was activated, and the expression of TNFSF13B (Tumor necrosis factor superfamily 13b, encoding B lymphocyte stimulator [BLyS]), the representative gene of this pathway, and the genes encoding its receptors (interleukin-10 and transforming growth factor beta) were significantly upregulated. Animal experiments revealed that V. parvula promoted colorectal carcinogenesis and increased BLyS levels, while BBR reversed this effect.
CONCLUSION:
BBR might inhibit V. parvula and further weaken the immunomodulatory effect of B cells induced by V. parvula , thereby blocking the development of colorectal tumors.
TRIAL REGISTRAION
ClinicalTrials.gov, No. NCT02226185.
Animals
;
Humans
;
Berberine/therapeutic use*
;
Carcinogenesis
;
Veillonella
;
Colorectal Neoplasms/genetics*
;
Tumor Microenvironment
10.Quality evaluation of Compound Cheqian Tablets based on UPLC-Q-TOF-MS/MS, network pharmacology and "double external standards" QAMS.
Kang WANG ; Pei LIU ; Si-Fan WANG ; Jie-Yu ZHANG ; Zhi-Zhi HU ; Yu-Qi MEI ; Ying-Bo YANG ; Zheng-Tao WANG ; Li YANG
China Journal of Chinese Materia Medica 2023;48(17):4675-4685
The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.
Humans
;
Tandem Mass Spectrometry
;
Berberine/pharmacology*
;
Chromatography, High Pressure Liquid/methods*
;
Network Pharmacology
;
Diabetic Nephropathies
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Tablets

Result Analysis
Print
Save
E-mail