1.A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids.
Yaoting LI ; Yuhan FENG ; Wan GUO ; Yu GAO ; Jiatao ZHANG ; Lu YANG ; Chun LEI ; Yun KANG ; Yaqin WANG ; Xudong QU ; Jianming HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):630-640
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Cytochrome P-450 Enzyme System/chemistry*
;
Benzylisoquinolines/chemistry*
;
Hydroxylation
;
Plant Proteins/chemistry*
;
Alkaloids/metabolism*
;
Stephania tetrandra/genetics*
2.Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants.
Da-Cheng HAO ; Li-Jia XU ; Yu-Wei ZHENG ; Huai-Yu LYU ; Pei-Gen XIAO
Chinese journal of integrative medicine 2022;28(12):1111-1126
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Humans
;
Plants, Medicinal/chemistry*
;
Phylogeny
;
Ranunculaceae/genetics*
;
Medicine, Traditional
;
Alkaloids
;
Biodiversity
;
Benzylisoquinolines
3.Research development on modern pharmacological effect of tetrandrine.
Yuan XI ; Hai-Jing ZHANG ; Zu-Guang YE ; Guang-Ping ZHANG
China Journal of Chinese Materia Medica 2020;45(1):20-28
Han stephania, also known as Stephania tetrandra, expelling wind, relieve pain and inducing diuresis for removing edema, is a traditional Chinese medicine for treating rheumatic arthralgia. Alkaloids have an important pharmacodynamic basis in S. tetrandra, and tetrandrine is one kind content of bisbenzylisoquinoline alkaloids, which has many biological activities. These activities include anti-tumor in many ways, clinically inhibiting multiple inflammatory factors, preventing and treating liver fibrosis and renal fibrosis and many other kinds of fibrotic diseases, and in addition, tetrandrine could work synergistically with other drugs. In recent years, through in-depth research by scholars at home and abroad, it has been found that tetrandrine has a protective effect on the nervous system and ischemia-reperfusion injury. At the same time, as a calcium ion antagonist, tetrandrine could effectively block the deposition of calcium ions inside and outside the cell. In summary, the application prospect of tetrandrine in clinical practice is very extensive. In this paper, the pharmacological effects of tetrandrine and the possible mechanisms for these effects are summarized, and review its current research progress. It is hoped that the possible application direction of tetrandrine can be revealed more comprehensively, and provide better enlightenment and ideas for clinical application.
Benzylisoquinolines/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Stephania tetrandra/chemistry*
4.Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile.
Rui MENG ; Ke LI ; Zhe CHEN ; Chen SHI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):14-20
The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt (PSS) as anionic layer and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs (4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of-57.8 mV. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs (4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.
Antineoplastic Agents, Phytogenic
;
administration & dosage
;
chemistry
;
Benzylisoquinolines
;
administration & dosage
;
chemistry
;
Cell Line, Tumor
;
Drug Liberation
;
Humans
;
Lactic Acid
;
chemistry
;
Nanoparticles
;
adverse effects
;
chemistry
;
metabolism
;
Polyamines
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Polystyrenes
;
chemistry
;
Static Electricity
5.Anti-proliferative and apoptotic effects of S1, a tetrandrine derivative, in human gastric cancer BGC-823 cells.
Rong-Rong LEI ; Hai-Feng HU ; Fan BAI ; Ying LIU ; Chun-Zhen WU ; Xiao-Xing HUANG ; Li-Ping XIE ; You-Jia HU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(7):527-533
The aim of the study was to investigate the anti-proliferation and apoptosis-inducing effects of S1, a novel tetrandrine derivative, in human gastric cancer BGC-823 cells and explore the possible mechanism of action. The anti-proliferative activity was determined by MTT assay; the induction of cell cycle arrest and apoptosis were detected by flow cytometry. Quantitative real time RT-PCR and Western blotting were used to evaluate the mRNA and protein expression levels in mitochondrial pathway. S1 significantly reduced cell viability and induced a G2/M phase arrest and apoptosis in dose- and time-dependent manner. Further studies showed that S1 increased mRNA and protein expression of Bax and the Bax/Bcl-2 ratio. Moreover, S1 decreased the protein expression of procaspase-9 and procaspase-3, suggesting that the induction of apoptosis may be related to the alteration of the ratio of Bax/Bcl-2 and the activation of caspases. These findings suggested that S1 merits further investigation as a novel therapeutic agent for the treatment of human gastric cancer.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Benzylisoquinolines
;
chemistry
;
pharmacology
;
Caspase 3
;
genetics
;
metabolism
;
Caspase 9
;
genetics
;
metabolism
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Humans
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
Stomach Neoplasms
;
drug therapy
;
enzymology
;
genetics
;
physiopathology
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
6.Synthesis and evaluation of benzylisoquinoline derivatives for their inhibition on pancreatic lipase and preadipocyte proliferation.
Feng TIAN ; Hao-Yu LV ; Ji-Long ZOU ; Yi WANG ; Meng-Jun DUAN ; Xiao-Qin CHU ; Dan LI ; Liang ZHU ; Jian-Qin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):382-390
The present study was designed to synthesize and evaluate a series of benzylisoquinoline derivatives. These compounds were synthesized by Bischler-Napieralski cyclization to yield 1-benzyl-3,4-dihydroisoquinolines, and the products were obtained by reductions. All these compounds were identified by MS, (1)H NMR and (13)C NMR. The inhibitory activities on pancreatic lipase and preadipocyte proliferation for the synthesized compounds and alkaloids from Nulembo nucifera were assessed in vitro. Most of the compounds showed inhibitory activities on both pancreatic lipase and preadipocyte proliferation. Particularly, compounds 7p-7u and 9d-9f exhibited significant inhibitory activity on pancreatic lipase while compounds 7c, 7d, 7f, 7g, 7i, and 7j potently inhibited the proliferation of 3T3-L1 preadipocytes. Our results provided a basis for future evaluation and development of these compounds as leads for therapeutics for human diseases.
Adipocytes
;
cytology
;
drug effects
;
Benzylisoquinolines
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Enzyme Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
Humans
;
Lipase
;
antagonists & inhibitors
;
metabolism
;
Structure-Activity Relationship
7.Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres.
Jin LU ; Meng ZHANG ; Hua-xu ZHU ; Li-wei GUO ; Lin-mei PAN ; Ting-ming FU
China Journal of Chinese Materia Medica 2015;40(6):1091-1096
Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound.
Benzofurans
;
chemistry
;
Benzylisoquinolines
;
chemistry
;
Drug Carriers
;
chemistry
;
Drug Compounding
;
instrumentation
;
methods
;
Drugs, Chinese Herbal
;
chemistry
;
Kinetics
;
Lactic Acid
;
chemistry
;
Microspheres
;
Particle Size
;
Polyglycolic Acid
;
chemistry
8.Tetrandrine inhibits migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes through down-regulating the expressions of Rac1, Cdc42, and RhoA GTPases and activation of the PI3K/Akt and JNK signaling pathways.
Qi LV ; Xian-Yang ZHU ; Yu-Feng XIA ; Yue DAI ; Zhi-Feng WEI
Chinese Journal of Natural Medicines (English Ed.) 2015;13(11):831-841
Tetrandrine (Tet), the main active constituent of Stephania tetrandra root, has been demonstrated to alleviate adjuvant-induced arthritis in rats. The present study was designed to investigate the effects of Tet on the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and explore the underlying mechanisms. By using cultures of primary FLS isolated from synoviums of RA patients and cell line MH7A, Tet (0.3, 1 μmol·L(-1)) was proven to significantly impede migration and invasion of RA-FLS, but not cell proliferation. Tet also greatly reduced the activation and expressions of matrix degrading enzymes MMP-2/9, the expression of F-actin and the activation of FAK, which controlled the morphologic changes in migration process of FLS. To identify the key signaling pathways by which Tet exerts anti-migration effect, the specific inhibitors of multiple signaling pathways LY294002, Triciribine, SP600125, U0126, SB203580, and PDTC (against PI3K, Akt, JNK, ERK, p38 MAPK and NF-κB-p65, respectively) were used. Among them, LY294002, Triciribine, and SP600125 were shown to obviously inhibit the migration of MH7A cells. Consistently, Tet was able to down-regulate the activation of Akt and JNK as demonstrated by Western blotting assay. Moreover, Tet could reduce the expressions of migration-related proteins Rho GTPases Rac1, Cdc42, and RhoA in MH7A cells. In conclusion, Tet can impede the migration and invasion of RA-FLS, which provides a plausible explanation for its protective effect on RA. The underlying mechanisms involve the reduction of the expressions of Rac1, Cdc42, and RhoA, inhibition of the activation of Akt and JNK, and subsequent down-regulation of activation and/or expressions of MMP-2/9, F-actin, and FAK.
Animals
;
Arthritis
;
Arthritis, Rheumatoid
;
metabolism
;
prevention & control
;
Benzylisoquinolines
;
pharmacology
;
therapeutic use
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
Cells, Cultured
;
Disease Models, Animal
;
Down-Regulation
;
Fibroblasts
;
drug effects
;
metabolism
;
Humans
;
MAP Kinase Signaling System
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plant Roots
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Stephania
;
chemistry
;
Synovial Membrane
;
cytology
;
drug effects
;
metabolism
;
rac1 GTP-Binding Protein
;
metabolism
;
rhoA GTP-Binding Protein
;
metabolism
9.Preparation and characterization of tetrandrine-loaded PLGA nanocomposite particles by premix membrane emulsification coupled with spray-drying method.
Tao HU ; Hua-Xu ZHU ; Li-Wei GUO ; Lin-Mei PAN ; Bo LI ; Fei-Yan SHI ; Jin LU
Acta Pharmaceutica Sinica 2014;49(11):1607-1613
For effective inhalable dry-powder drug delivery, tetrandrine-PLGA (polylactic-co-glycolic acid) nanocomposite particles have been developed to overcome the disadvantages of nanoparticles and microparticles. The primary nanoparticles were prepared by using premix membrane emulsification method. To prepare second particles, they were spray dried. The final particles were characterized by scanning electron microscopy (SEM), dry laser particle size analysis, high performance liquid chromatography (HPLC), X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared analysis (IR) and confocal laser scanning microscope (CLSM). The average size of the primary particles was (337.5 ± 6.2) nm, while that second particles was (3.675 ± 0.16) μm which can be decomposed into primary nanoparticles in water. And the second particles were solid sphere-like with the drug dispersed as armorphous form in them. It is a reference for components delivery to lung in a new form.
Administration, Inhalation
;
Benzylisoquinolines
;
chemistry
;
Calorimetry, Differential Scanning
;
Drug Delivery Systems
;
Dry Powder Inhalers
;
Lactic Acid
;
chemistry
;
Microscopy, Electron, Scanning
;
Nanocomposites
;
chemistry
;
Nanoparticles
;
chemistry
;
Particle Size
;
Pharmaceutical Preparations
;
Polyglycolic Acid
;
chemistry
;
X-Ray Diffraction
10.Effect of neferine on hepatic stellate cells in collagen-I, TIMP-1 and MMP-2.
Xian-Mei LI ; Lei DONG ; Hai-Tao SHI ; Tian-Jiao GAO ; Miao JIA
China Journal of Chinese Materia Medica 2013;38(13):2206-2209
OBJECTIVETo observe the effect of neferine on Collagen-I, TIMP-1 and MMP-2 expressions and protein secretion of hepatic stellate cells.
METHODThe hepatic stellate cell line HSC-T6 was cultured in vitro, and then randomly divided into 5 groups: the control group, the platelet-derived growth factor (PDGF) group and PDGF + neferine (2, 6, 10 micromol x L(-1)) groups. All of the groups were cultured for 48 h, and their cells were collected to extract mRNA and detect Collagen-I, TIMP-1 and MMP-2 expressions with RT-PCR. Their cell supernatants were also collected to determine the protein content of three factors with ELISA.
RESULTCompared with the control group, PDGF could remarkably increase the Collagen-I, TIMP-1 and MMP-2 expressions and protein secretion of hepatic stellate cells. Compared with the PDGF group, PDGF + neferine (6, 10 micromol x L(-1)) groups showed a notable decrease in the Collagen-I and mRNA expression and protein secretion along with the increase in the concentration, whereas the PDGF + neferine (2 micromol x L(-1)) group showed no significant change in the Collagen-I and mRNA expression and protein secretion. Compared with the PDGF group, three PDGF + neferine groups showed no notable change in MMP-2 expression and protein secretion.
CONCLUSIONNeferine can inhibit the Collagen-I, TIMP-1 and mRNA protein expression and protein secretion of PDGF-induced HSCs along with the increase in the concentration, but with not remarkable effect on the MMP-2 expression and secretion.
Animals ; Benzylisoquinolines ; pharmacology ; Cells, Cultured ; Collagen Type I ; analysis ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Hepatic Stellate Cells ; chemistry ; drug effects ; Matrix Metalloproteinase 2 ; analysis ; genetics ; Rats ; Tissue Inhibitor of Metalloproteinase-1 ; analysis ; genetics

Result Analysis
Print
Save
E-mail