1.Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling.
Tao GUO ; Bolin CHEN ; Jinsha SHI ; Xianfeng KUANG ; Tengyue YU ; Song WEI ; Xiong LIU ; Rong XIAO ; Juanjuan LI
Journal of Southern Medical University 2025;45(10):2071-2081
OBJECTIVES:
To evaluate the therapeutic effect of gastrodin against hypoxic-ischemic brain damage (HIBD) in neonatal mice and explore the role of GPX4/SLC7A11/FTH1 signaling in mediating its effect.
METHODS:
Twenty-four 9- to 11-day-old C57BL/6J mice were randomized equally into 4 groups for sham operation, HIBD modeling by right common carotid artery ligation and subsequent exposure to hypoxia for 1 h, or gastrodin treatment at 100 or 200 mg/kg before and at 1 and 2 days after modeling. The mice then underwent neurological assessment (Zea-Longa scores), and the cerebral cortical penumbra tissue were collected for HE and Nissl staining, detection of ferroptosis biomarkers and protein expressions of GPX4, SLC7A11, and FTH1 with Western blotting and immunofluorescence co-localization, and observation of mitochondrial ultrastructure with electron microscopy. In cultured HT22 neuronal cells with oxygen-glucose deprivation (OGD) for 2 h, the effects of pretreatments with 0.5 mmol/L gastrodin, 10 μmol/L RSL3 (a GPX4 inhibitor), alone or in combination, were analyzed on expressions of ferroptosis-related proteins, cellular Fe²⁺, ROS, lipid peroxidation, MDA, and GSH levels, mitochondrial membrane potential (JC-1), and cell viability.
RESULTS:
Gastrodin treatment at the two doses both significantly ameliorated HIBD and neurological deficits of the mice, reduced mitochondrial damage and Fe²⁺, MDA and ROS levels, increased GSH level, and upregulated GPX4, SLC7A11, and FTH1 protein expressions. In HT22 cells, gastrodin pretreatment obviously attenuated OGD-induced ferroptosis and improved cell viability and mitochondrial function. Co-treatment with RSL3 potently abrogated the inhibitory effects of gastrodin on Fe²⁺, ROS, BODIPY-C11, and MDA levels and attenuated its protective effects on GSH level, cell viability, and mitochondrial membrane potential.
CONCLUSIONS
Gastrodin provides neuroprotective effects in neonatal mice with HIBD by suppressing neuronal ferroptosis via upregulating the GPX4/SLC7A11/FTH1 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Glucosides/pharmacology*
;
Animals, Newborn
;
Benzyl Alcohols/pharmacology*
;
Amino Acid Transport System y+/metabolism*
2.Research progress on mechanism of gastrodin and p-hydroxybenzyl alcohol on central nervous system.
Zhi-Long ZHANG ; Yu-Gang GAO ; Pu ZANG ; Pei-Pei GU ; Yan ZHAO ; Zhong-Mei HE ; Hong-Yan ZHU
China Journal of Chinese Materia Medica 2020;45(2):312-320
Gastrodin(GAS) and p-hydroxybenzyl alcohol(HBA) are extracts of dried tubers of Gastrodia elata, which is the material basis for its efficacy and belongs to phenolic compounds. Modern pharmacology studies have shown that they have significant effects on central nervous system diseases, such as insomnia, convulsions, depression, ischemic stroke, anxiety, and cognitive impairment, and these diseases are closely related to neurotransmitters and cytokines. This paper described various mechanisms of GAS and HBA monomer components on the central nervous system. They alleviate hippocampal neuronal toxicity mainly by regulating a variety of neurotransmitters, such as acetylcholine, glutamic acid(GLU), γ-aminobutyric acid(GABA), serotonin(5-HT), dopamine(DA), norepinephrine(NE), 5-indoleacetic acid(5-HIAA), high vanillic acid(HVA) and dihydroxyphenylacetic acid(DOPAC), pro-inflammatory cell growth factors, such as IL-1β, IL-6 and TNF-α and relevant receptor functions, and exert neuropharmacological effects by effectively increasing mRNA expressions of brain neurotrophic factors, such as BDNF and GDNF, and further inhibiting the apoptosis of damaged neurons. This paper summarized various mechanisms on the central nervous system, which provides a scientific basis for the further research of the neuropharmacological mechanism of GAS and HBA and the development of new drugs and functional food.
Benzyl Alcohols/pharmacology*
;
Central Nervous System/drug effects*
;
Gastrodia/chemistry*
;
Glucosides/pharmacology*
;
Humans
;
Plant Extracts/pharmacology*
3.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
4.Vasorelaxation effect of gastrodin on isolated thoracic aorta rings of rats.
Yuan-long XIE ; Min ZHOU ; Hui-hao MA ; Xiang WANG ; Ju-ju LIU
Chinese journal of integrative medicine 2015;21(12):944-948
OBJECTIVETo study the effect of gastrodin on isolated thoracic aorta rings of rats and to investigate the potential mechanism.
METHODSA perfusion model of isolated thoracic aorta rings of rats was applied. The effect of cumulative gastrodin (5, 50, 100,150, 200, and 250 μmol/L) on endothelium-intact aorta rings was investigated. The same procedure was applied to observe the effect of gastrodin on endothelium-intact/denuded aorta rings pre-contracted with 10(-6) mol/L phenylephrine hydrochloride (PE). The aorta rings incubated by 200 mmol/L gastrodin in the Ca(2+)-free (K-H) solution was contracted by using PE. The effect of 200 mmol/L gastrodin on endothelium-denuded aorta rings pre-contracted with 60 mmol/L KCl was also observed.
RESULTSCompared with the denuded gastrodin group, the intact gastrodin group could significantly relax the PE-contracted aorta rings (P<0.01). In Ca(2+)-free (K-H) solution KHS, the PE-induced contraction rate of aorta rings pre-incubated by gastrodin was 6.5%±0.7%, which was significantly less than the control group (11.8%±0.9%,P<0.01). However, after 3 mmol/L CaCl2 was added, the Ca(2+)-induced contraction in the gastrodin group (51.7%±2.4%) was similar to that in the control group (49.8%±2.8%). The contractile rate of rings in the KCl-contracted gastrodin group (96.3%±0.6%) was not significantly different from that in the control group (96.8%±1.2%).
CONCLUSIONSGastrodin has the effect of vasorelaxation on isolated thoracic aorta rings of rats. The mechanism of the vasorelaxation of gastrodin may mainly work through the inhibition of inositol 1, 4, 5-trisphosphosphate receptor on the sarcoplasmic reticulum of the arterial smooth muscle, which leads to the reduction of the Ca(2+) released from the sarcoplasmic reticulum.
Animals ; Aorta, Thoracic ; drug effects ; physiology ; Benzyl Alcohols ; pharmacology ; Calcium ; metabolism ; Endothelium, Vascular ; physiology ; Female ; Glucosides ; pharmacology ; In Vitro Techniques ; Male ; Phenylephrine ; pharmacology ; Rats ; Rats, Wistar ; Vasodilation ; drug effects
5.Screening of 10 types of Chinese herbal compounds inhibiting Abeta and their possible related mechanism in vitro.
Ran ZHU ; Tian-Xi HUANG ; Xue-Mei ZHAO ; Ji-Min ZHANG ; Ping LIANG
Acta Pharmaceutica Sinica 2014;49(6):800-806
This study is to screen the Chinese herbal compounds which could inhibit the production of Abeta and investigate the underlying mechanism. Ten types of compounds which have potential value in the treatment of AD were selected as initial screening trial. The cell models which used could overexpress Abeta and beta-secretases or Abeta and gamma-secretases. Extracellular Abeta was determined by ELISA after the cell models treated with different concentrations of compounds (0.5-100 micromol x L(-1)), separately. Then the compounds were selected which could inhibit extracellular Abeta and their best concentration ranges were decided, too. Furthermore, the cell viability and apoptosis rate, the level of intracellular Abeta, beta and gamma-secretases were determined after the cell models treated with different concentrations of selected compounds. The results showed that 4 of the 10 compounds could reduce the level of extracellular Abeta; they were cryptotanshinone, astragalosides, gastrodin and paeoniflorin, and their best concentration ranges were 0.5-5.0, 0.5-5.0, 5.0-50, 1.0-25 micromol x L(-1), respectively. Further study indicated that the 4 selected compounds were nontoxic to the cellular models and lowering intracellular Abeta were more effective compared with extracellular; of which astragalosides and gastrodin showed dose-dependent inhibition to the activities of beta and gamma-secretases, with the maximum inhibiting rates of 78.2% and 80.3%, respectively. In conclusion, cryptotanshinone, astragalosides, gastrodin and paeoniflorin could inhibit the expression and secretion of Abeta, and the underlying inhibiting mechanism of astragalosides and gastrodin were related with the reduction of the beta and gamma-secretase activities, respectively.
Amyloid Precursor Protein Secretases
;
metabolism
;
Amyloid beta-Peptides
;
antagonists & inhibitors
;
Apoptosis
;
Benzyl Alcohols
;
pharmacology
;
Cell Line
;
Dose-Response Relationship, Drug
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucosides
;
pharmacology
;
Humans
;
Monoterpenes
;
pharmacology
;
Phenanthrenes
;
pharmacology
;
Saponins
;
pharmacology
6.Gastrodin prevents steroid-induced osteonecrosis of the femoral head in rats by anti-apoptosis.
Huifeng ZHENG ; Erping YANG ; Hao PENG ; Jianping LI ; Sen CHEN ; Jianlin ZHOU ; Hongsong FANG ; Bo QIU ; Zhe WANG
Chinese Medical Journal 2014;127(22):3926-3931
BACKGROUNDGastrodin, as one of the major components extracted from the Chinese herb Gastrodia elata Bl., has many biologic effects, one of which is anti-apoptosis. Apoptosis is considered to be one of the pathogenetic mechanisms in steroid-induced osteonecrosis of the femoral head (ONFH). Therefore, we performed this study to investigate whether gastrodin has the potential to prevent steroid-induced ONFH.
METHODSAll 18 male adult Wistar rats were divided equally into three groups: the steroid group, the gastrodin+steroid group, and the control group. Osteonecrosis was induced by low-dose lipopolysaccharide and subsequent high-dose methylprednisolone. Histomorphometric method was used to determine the incidence of osteonecrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay was performed to detect apoptotic index of osteocytes and osteoblasts. Real-time PCR and Western blotting were performed to detect mRNA and protein expression of Bax, Bcl-2, and Caspase-3. Fisher's exact probability test and one-way analysis of variance (ANOVA) with Turkey's post hoc test were used to examine significant differences between groups.
RESULTSThe incidence of osteonecrosis in the gastrodin+steroid group (16.7%) was significantly lower than that in the steroid group (83.3%). According to TUNEL assay, the apoptotic indices in the steroid group, the gastrodin+steroid group, and the control group were 91.1%, 27.1%, and 5.4%, respectively, and the differences were significant between groups. Compared with the control group and the gastrodin+steroid group, the mRNA and protein expression levels of Bax and Caspase-3 were significantly higher in the steroid group, but the Bcl-2 mRNA and protein expression levels were significantly lower.
CONCLUSIONGastrodin could prevent steroid-induced ONFH by anti-apoptosis.
Animals ; Apoptosis ; drug effects ; Benzyl Alcohols ; therapeutic use ; Femur Head Necrosis ; drug therapy ; prevention & control ; Glucosides ; therapeutic use ; Lipopolysaccharides ; pharmacology ; Male ; Rats ; Rats, Wistar ; Steroids ; pharmacology
7.Pharmacokinetics of gastrodin from Tiangou Jiangya capsule in rats.
China Journal of Chinese Materia Medica 2014;39(15):2964-2967
The paper aims to study the pharmacokinetic parameters of gastrodin in rats effected by compound compatibilitiy and different doses of Tiangou Jiangya capsule. The extracts from Gastrodiae Rhizoma( equivalent to gastrodin 16.82 mg x kg(-1) and Tiangou jiangya capsule (equivalent to gastrodin 8.410, 16.82, 33.64 mg x kg(-1)) were oral administrated to rats respectively. The plasma were taken at various time points and treated with acetonitrile to measure the contents of gastrodin by HPLC method. The mean plasma concentration-time data were analyzed by 3P97 pharmacokinetic software and the pharmacokinetic parameters between groups were treated by SPSS 16.0. The results showed that gastrodin in rat was fitted to one-compartment model, Cmax and AUC of Tiangou Jiangya capsule were in direct proportion to oral administration, and t1/2Ka had nothing to do with doses, which indicated that gastrodin was fitted first-order rate transfter process in vivo. Morever, comparison with the Gastrodiae Rhizoma extract, isodose gastrodin in Tiangou Jiangya capsule showed a significant decrease for Cmax, Ke and increase for t1/2Ke, V/Fc, this indicated that compound compatibility can delay the absorbtion of gastrodin, prolong the resident time and promote the distribution in vivo, but its bioavailability is not significantly effected.
Administration, Oral
;
Animals
;
Benzyl Alcohols
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Blood Pressure
;
drug effects
;
Female
;
Flavonoids
;
chemistry
;
pharmacology
;
Furans
;
chemistry
;
pharmacology
;
Gastrodia
;
chemistry
;
Glucosides
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
pharmacology
;
Lignans
;
chemistry
;
pharmacology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Software
8.Study on in situ intestinal absorption of baicalin contained in Tiangou Jiangya capsules.
Ling-Jun LI ; Ji LI ; Hua-Wei LOU
China Journal of Chinese Materia Medica 2013;38(6):894-898
OBJECTIVETo study in situ intestinal absorption kinetics of baicalin contained in Tiangou Jiangya capsules, and the effect of different intestinal segments, pH value, drug concentration and P-gp inhibitor on the absorption.
METHODThe in situ intestinal perfusion test was adopted, and HPLC method was used to determine the content of baicalin in samples at different time points. Ultra-violet (UV) spectrophotometry was used to determine the content of phenol red in samples at different time points.
RESULTWhen pH value was at 5. 0, 6. 5, 7. 4, the absorption of baicalin was not impacted. P-gp inhibitor verapamil could enhance the absorption of baicalin. When the quality concentration of the test solution ranged between 5-20 g L -1 , the linearity of the absorption amount of baicalin increased. The absorption kinetic equation of baicalin was Y = -0. 073 7X +0. 118 7 (r = 0. 994 8) , K. 0. 073 7 h -1 , t1/2 9. 40 h.
CONCLUSIONBaicalin is mainly absorbed in colon. The absorption of baicalin shows the first-order kinetics process, with the absorption mechanism of passive diffusion. Baicalin is a substrate for P-gp.
ATP-Binding Cassette, Sub-Family B, Member 1 ; antagonists & inhibitors ; Animals ; Benzyl Alcohols ; chemistry ; standards ; Female ; Flavonoids ; chemistry ; metabolism ; standards ; Furans ; chemistry ; standards ; Glucosides ; chemistry ; standards ; Hydrogen-Ion Concentration ; Intestinal Absorption ; drug effects ; Kinetics ; Lignans ; chemistry ; standards ; Male ; Quality Control ; Rats ; Rats, Wistar ; Verapamil ; pharmacology
9.Effect and mechanism of gastrodin in relaxing isolated thoracic aorta rings in rats.
Yingqiao ZHANG ; Tao YU ; Jiyang XU ; Xiaohong BIAN ; Jianliang XU ; Yamei LIU
China Journal of Chinese Materia Medica 2012;37(14):2135-2138
OBJECTIVETo investigate the effect of gastrodin in relaxing isolated thoracic aorta rings in rats and discuss its possible mechanism.
METHODIsotonic tension of isolated thoracic aortic rings in rats with norepineprine (NE) and KCl was recorded to observe the vasodilatory effect of gastrodin and the influence of various drugs on it.
RESULTGastrodin had the effect in relaxing thoracic aortas with or without endothelium, and there was no significant difference. NG-nitro-L-argininemethylester (L-NAME, 1 x 10(-4) mol x L(-1)), methylene blue (MB, 1 x 10(-5) mol x L(-1)), indomethacin (INDO, 1 x 10(-5) mol x L(-1)) had no effect on the vasodilation action of gastrodin on thoracic aortas precontracted by NE. 4-aminopyrimide (4-AP, 1 x 10(-4) mol x L(-1)), tetrathylamonium (TEA, 1 x 10(-3) mol x L(-1)), BaCl2 (1 x 10(-4) mol x L(-1)) and glibenclamide (Gli, 1 x 10(-5) mol x L(-1)) could inhibit gastrodin's effect in relaxing thoracic aorta rings. In the absence of Ca2+, pre-incubated gastrodin showed a notable inhibitory effect in relaxing NE contraction.
CONCLUSIONGastrodin shows a dose-dependent and endothelium-independent effect in relaxing rat isolated thoracic aorta rings. The mechanism is related to K+ channel, inhibition of release of Ca+ stored in endoplasmic reticulum of vascular smooth muscle cells and inflow of external calcium Ca2+.
Animals ; Aorta, Thoracic ; drug effects ; physiology ; Benzyl Alcohols ; pharmacology ; Calcium ; metabolism ; Endothelium, Vascular ; physiology ; Glucosides ; pharmacology ; In Vitro Techniques ; Male ; Norepinephrine ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Vasodilation ; drug effects
10.The pharmacological mechanism of gastrodin on calcitonin gene-related peptide of cultured rat trigeminal ganglion.
Guo-Gang LUO ; Wen-Jing FAN ; Xing-Yun YUAN ; Bo-Bo YUAN ; She-Min LÜ ; Yong-Xiao CAO ; Cang-Bao XU
Acta Pharmaceutica Sinica 2011;46(12):1451-1456
The Chinese herbal medicine Tianma (Gastrodia elata) has been used for treating and preventing primary headache over thousands of years, but the exact pharmacological mechanism of the main bioactive ingredient gastrodin remains unclear. In present study, the effects of gastrodin on calcitonin gene-related peptide (CGRP) and phosphorylated extracellular signal-regulated kinase1/2 (pERK1/2) expression were observed in rat trigeminal ganglion (TG) after in vitro organ culture to explore the underlying intracellular mechanism of gastrodin on primary vascular-associated headache. CGRP-immunoreactivity (CGRP-ir) positive neurons count, positive area, mean optical density and integrated optical density by means of immunohistochemistry stain were compared at different concentrations of gastrodin, which was separately co-incubated with DMEM in SD rat TG for 24 hours. Only at 5 or 10 mmol L(-1) concentration, gastrodin demonstrated significantly concentration-dependent reduction of CGRP-ir (+) expression and its action closed to 1.2 mmol L(-1) sumatriptan succinate. While at 2.5, 20, and 40 mmol L(-1) concentration, gastrodin did not show remarkable effects on CGRP-ir (+) expression. The optimal concentration of gastrodin (5 and 10 mmol L(-1)) similarly inhibited CGRP-mRNA expression level separately compared with 1.2 mmol L(-1) sumatriptan succinate and 10 micromol L(-1) flunarizine hydrochloride, which was quantitatively analyzed by real-time PCR (RT-PCR). pERK1/2 level was examined by Western blotting after co-cultured with optimal concentration of gastrodin and effective specific ERK1/2 pathway inhibitors PD98059, U0126. The result indicated that gastrodin significantly reduced pERK1/2 protein actions similarly to ERK1/2 pathway specific blockade. It suggests ERK1/2 signaling transduction pathway may be involved in gastrodin intracellular mechanism. This study indicates gastrodin (5 and 10 mmol L(-1)) can remarkably reduce CGRP-ir (+) neuron, CGRP-mRNA and pERK1/2 expression level in cultured rat TG, with its actions similar to the effective concentration of sumatriptan succinate, flunarizine hydrochloride and specific ERK1/2 pathway blocker. The intracellular signaling transduction ERK1/2 pathway may be involved in the gastrodin reducing CGRP up-regulation in rat TG after organ culture.
Animals
;
Benzyl Alcohols
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Butadienes
;
pharmacology
;
Calcitonin Gene-Related Peptide
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
Flavonoids
;
pharmacology
;
Flunarizine
;
pharmacology
;
Gastrodia
;
chemistry
;
Glucosides
;
administration & dosage
;
isolation & purification
;
pharmacology
;
MAP Kinase Signaling System
;
drug effects
;
Male
;
Mitogen-Activated Protein Kinase 1
;
antagonists & inhibitors
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
antagonists & inhibitors
;
metabolism
;
Nitriles
;
pharmacology
;
Organ Culture Techniques
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Sumatriptan
;
pharmacology
;
Trigeminal Ganglion
;
metabolism
;
Vasoconstrictor Agents
;
pharmacology
;
Vasodilator Agents
;
pharmacology

Result Analysis
Print
Save
E-mail