1.Proliferation Inhibitory Activity of Quinones from Blaps rynchopetera Defense Secretion on Colorectal Tumor Cells.
Xiao-Li QIAN ; Di MENG ; Heng LIU ; Chao-He LIU ; Ping ZHOU ; Yin-He YANG ; Jia-Peng WANG ; Huai XIAO ; Zhong-Tao DING
Chinese journal of integrative medicine 2023;29(8):683-690
OBJECTIVE:
To explore the proliferation inhibitory effect of quinones from Blaps rynchopetera defense secretion on colorectal tumor cell lines.
METHODS:
Human colorectal cancer cell HT-29, human colorectal adenocarcinoma cell Caco-2 and normal human colon epithelial cell CCD841 were chosen for the evaluation of inhibitory activity of the main quinones of B. rynchopetera defense secretion, including methyl p-benzoquinone (MBQ), ethyl p-benzoquinone (EBQ), and methyl hydroquinone (MHQ), through methyl thiazolyl tetrazolium assay. The tumor-related factors, cell cycles, related gene expressions and protein levels were detected by enzyme-linked immunosorbent assy, flow cytometry, RT-polymerase chain reaction and Western blot, respectively.
RESULTS:
MBQ, EBQ, and MHQ could significantly inhibit the proliferation of Caco-2, with half maximal inhibitory concentration (IC50) values of 7.04 ± 0.88, 10.92 ± 0.32, 9.35 ± 0.83, HT-29, with IC50 values of 14.90 ± 2.71, 20.50 ± 6.37, 13.90 ± 1.30, and CCD841, with IC50 values of 11.40 ± 0.68, 7.02 ± 0.44 and 7.83 ± 0.05 µg/mL, respectively. Tested quinones can reduce the expression of tumor-related factors tumor necrosis factor α, interleukin (IL)-10, and IL-6 in HT-29 cells, selectively promote apoptosis, and regulate the cell cycle which can reduce the proportion of cells in the G1 phase and increase the proportion of the S phase. Meanwhile, tested quinones could up-regulate mRNA and protein expression of GSK-3β and APC, while down-regulate that of β-catenin, Frizzled1, c-Myc, and CyclinD1 in the Wnt/β-catenin pathway of HT-29 cells.
CONCLUSION
Quinones from B. rynchopetera defense secretion could inhibit the proliferation of colorectal tumor cells and reduce the expression of related factors, which would be functioned by regulating cell cycle, selectively promoting apoptosis, and affecting Wnt/β-catenin pathway-related mRNA and protein expressions.
Humans
;
beta Catenin/metabolism*
;
Caco-2 Cells
;
Quinones/pharmacology*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Proliferation
;
Colorectal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Apoptosis
;
Benzoquinones/pharmacology*
;
RNA, Messenger
;
Wnt Signaling Pathway
2.Effect of acupuncture and moxibustion on intestinal flora in the rats with diarrhea-predominant irritable bowel syndrome based on 16S rDNA technique.
Bi-Yu LAI ; Meng-Ying HONG ; Yong-Jia HE ; Xing LI ; Shuang-Shuang WANG ; Yao CHEN ; Xin-Wu LI ; Jing NIE ; Dan LIU ; Chang SHE
Chinese Acupuncture & Moxibustion 2023;43(12):1411-1421
OBJECTIVES:
To explore the effect of acupuncture and moxibustion on intestinal flora in the rats with diarrhea-predominant irritable bowel syndrome (IBS-D) based on 16S rDNA technique.
METHODS:
Ten rats were randomized from 58 SPF-grade male SD rats to be the blank group. The remained 48 rats were prepared to be IBS-D models by the modified method of acetic acid enema combined with binding tail-clip stress. Forty successfully-modeled rats were randomly divided into a model group, an acupuncture group, a moxibustion group and a western medication group, with 10 rats in each one. In the acupuncture group, the needle was inserted at bilateral "Zusanli" (ST 36) and remained for 15 min in each rat. In the moxibustion group, the suspending moxibustion was delivered at bilateral "Zusanli" (ST 36) for 15 min. The rats in the western medication group were given pinaverium bromide suspension (10 mL/kg) by intragastric administration. The above interventions were performed once daily for consecutive 14 days. The body mass and the score of fecal trait were compared before and after modeling, as well as after intervention in each group. Fecal water content, diarrhea index and colon transit time (CTT) were measured after modeling and intervention in the rats of each group separately. After intervention, the colonic morphology of rats in each group was observed, and using 16S rDNA technique, the intestinal flora was detected.
RESULTS:
After modeling, compared with the blank group, the body mass and CTT were reduced (P<0.01); fecal trait scores, fecal water contents and diarrhea index increased (P<0.01) in the other 4 groups. After intervention, the body mass and CTT of the rats decreased (P<0.01), and fecal trait score, fecal water content and diarrhea index increased (P<0.01) in the model group compared with those in the blank group. In the acupuncture group, the moxibustion group and the western medication group, when compared with the model group, the body mass and CTT were elevated (P<0.01), while fecal trait scores, fecal water contents and diarrhea index declined (P<0.01). Compared with the western medication group, fecal water content decreased in the acupuncture group and the moxibustion group (P<0.05), while CTT increased in the acupuncture group (P<0.01), the body mass increased and fecal trait score was dropped in the moxibustion group (P<0.05). The colonic mucosa structure was clear and complete, and there was no obvious inflammatory cell infiltration in the blank group. The mild interstitial edema of intestinal mucosa was presented with the infiltration of few inflammatory cells in the model group. There was the infiltration of few inflammatory cells in the mucosa of the acupuncture group, the moxibustion group and the western medication group. Compared with the blank group, the indexes of Richness, Chao1, ACE and Shannon decreased in the model group (P<0.05). Indexes of Richness, Chao1 and ACE increased in the acupuncture group and the moxibustion group (P<0.05), and the Richness index in the western medication group increased (P<0.05) when compared with those in the model group. The relative abundance of Bacteroidetes, Proteobacteria and Prevotella increased (P<0.05), and that of Firmicutes and Muribaculaceae decreased (P<0.05) in the model group compared with those in the blank group. When compared with the model group, the relative abundance of Bacteroidetes, Proteobacteria and Prevotella was reduced (P<0.05), while that of Firmicutes and Muribaculaceae increased (P<0.05) in the acupuncture group, the moxibustion group and the western medication group; and that of Actinobacteria and Bifidobacterium increased in the acupuncture group and the moxibustion group (P<0.05). Compared with the blank group, the relative abundance of lipopolysaccharide (LPS) biosynthesis was elevated (P<0.05), and that of folate biosynthesis, lipoic acid metabolism, zeatin biosynthesis, ubiquinone and other terpenoid quinone biosynthesis decreased (P<0.05) in the model group. The relative abundance of LPS biosynthesis was dropped (P<0.05), and that of folate biosynthesis, lipoic acid metabolism, zeatin biosynthesis, ubiquinone and other terpenoid quinone biosynthesis increased (P<0.05) in the acupuncture group, the moxibustion group and the western medication group compared with those of the model group.
CONCLUSIONS
Either acupuncture or moxibustion can relieve the symptoms of IBS-D and protect intestinal mucosa, which may be associated with regulating the structure of intestinal flora and promoting nutrient metabolism and biosynthesis.
Rats
;
Male
;
Animals
;
Irritable Bowel Syndrome/therapy*
;
Moxibustion/methods*
;
Rats, Sprague-Dawley
;
Gastrointestinal Microbiome
;
Lipopolysaccharides
;
Thioctic Acid
;
Ubiquinone
;
Zeatin
;
Acupuncture Therapy
;
Diarrhea/therapy*
;
Terpenes
;
Water
;
Folic Acid
;
Acupuncture Points
3.Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2.
Rui XIONG ; Leike ZHANG ; Shiliang LI ; Yuan SUN ; Minyi DING ; Yong WANG ; Yongliang ZHAO ; Yan WU ; Weijuan SHANG ; Xiaming JIANG ; Jiwei SHAN ; Zihao SHEN ; Yi TONG ; Liuxin XU ; Yu CHEN ; Yingle LIU ; Gang ZOU ; Dimitri LAVILLETE ; Zhenjiang ZHAO ; Rui WANG ; Lili ZHU ; Gengfu XIAO ; Ke LAN ; Honglin LI ; Ke XU
Protein & Cell 2020;11(10):723-739
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.
Animals
;
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
physiology
;
Binding Sites
;
drug effects
;
Cell Line
;
Coronavirus Infections
;
drug therapy
;
virology
;
Crotonates
;
pharmacology
;
Cytokine Release Syndrome
;
drug therapy
;
Drug Evaluation, Preclinical
;
Gene Knockout Techniques
;
Humans
;
Influenza A virus
;
drug effects
;
Leflunomide
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
Oseltamivir
;
therapeutic use
;
Oxidoreductases
;
antagonists & inhibitors
;
metabolism
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
virology
;
Protein Binding
;
drug effects
;
Pyrimidines
;
biosynthesis
;
RNA Viruses
;
drug effects
;
physiology
;
Structure-Activity Relationship
;
Toluidines
;
pharmacology
;
Ubiquinone
;
metabolism
;
Virus Replication
;
drug effects
4.Effects of non-caloric ultrashort wave on the expression of CoQ10 and C1GALT1C1 in rats with cerebral ischemia reperfusion injury.
Rao CHEN ; Longkai PENG ; Yihong YAN ; Yongmei FAN
Journal of Central South University(Medical Sciences) 2020;45(1):24-34
OBJECTIVES:
To examine the changes of coenzyme Q10 (CoQ10) and β-galactosyl transferase specific chaperone 1 (C1GALT1C1) in brain of rats with ischemic injury at different time points and to explore the protective mechanism of ultrashort wave (USW) on ischemic brain injury.
METHODS:
Fifty SD rats were randomly divided into 5 groups (=10 per group): a sham group (control group) and 4 experimental group (ischemia for 2 h). The 4 experimental groups were set as a model 1 d group, a USW 1 d group, a model 3 d group and a USW 3 d group, respectively. Five rats were randomly selected for 2,3,5-triphenyltetrazoliumchloride (TTC) staining in each experimental group, and the remaining 5 rats were subjected to Western blotting and real-time PCR. The percentage of cerebral infarction volume and the relative expression level of CoQ10 and C1GALT1C1 in the brain were examined and compared.
RESULTS:
The infarct volume percentage after TTC staining was zero in the sham group. With the progress of disease and USW therapy, the infarct volume percentage was decreased in the experimental groups (all <0.05); Western blotting and real-time PCR showed that the relative expression level of CoQ10 in the sham group was the highest, while in the experimental groups, the content of CoQ10 showed a upward trend with the extension of disease and USW therapy, with significant difference (all <0.05). The relative expression level of C1GALT1C1 in the sham group was the lowest, but in the experimental groups, they showed a downward trend with the extension of disease and USW therapy, with significant difference (all <0.05).
CONCLUSIONS
Non-caloric USW therapy may upregulate the expression of CoQ10 to suppress the expression of C1GALT1C1 in rats, leading to alleviating cerebral ischemic reperfusion injury.
Animals
;
Brain
;
Brain Ischemia
;
Molecular Chaperones
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
Ubiquinone
;
analogs & derivatives
5.Antibacterial effects of sodium tripolyphosphate against Porphyromonas species associated with periodontitis of companion animals
Jae Hyung LEE ; Ji Hoi MOON ; Jae In RYU ; Sang Wook KANG ; Kyu Hwan KWACK ; Jin Yong LEE
Journal of Veterinary Science 2019;20(4):e33-
Porphyromonas species are closely associated with companion animal periodontitis which is one of the most common diseases in dogs and cats and leads to serious systemic diseases if left untreated. In this study, we evaluated the antimicrobial effects and mode of action of sodium tripolyphosphate (polyP3, Na5P3O10), a food additive with proven safety, using three pathogenic Porphyromonas species. The minimum inhibitory concentrations (MICs) of polyP3 against Porphyromonas gulae, Porphyromonas cansulci, and Porphyromonas cangingivalis were between 500 and 750 mg/L. PolyP3 significantly decreased viable planktonic cells as well as bacterial biofilm formation, even at sub-MIC concentrations. PolyP3 caused bacterial membrane disruption and this effect was most prominent in P. cangingivalis, which was demonstrated by measuring the amount of nucleotide leakage from the cells. To further investigate the mode of action of polyP3, high-throughput whole-transcriptome sequencing was performed using P. gulae. Approximately 30% of the total genes of P. gulae were differentially expressed by polyP3 (> 4-fold, adjusted p value < 0.01). PolyP3 influenced the expression of the P. gulae genes related to the biosynthesis of thiamine, ubiquinone, and peptidoglycan. Collectively, polyP3 has excellent antibacterial effects against pathogenic Porphyromonas species and can be a promising agent to control oral pathogenic bacteria in companion animals.
Animals
;
Bacteria
;
Biofilms
;
Cats
;
Dogs
;
Food Additives
;
Friends
;
Humans
;
Membranes
;
Microbial Sensitivity Tests
;
Peptidoglycan
;
Periodontitis
;
Pets
;
Plankton
;
Porphyromonas
;
Sodium
;
Thiamine
;
Ubiquinone
6.New Mutation of Coenzyme Q Monooxygenase 6 Causing Podocyte Injury in a Focal Segmental Glomerulosclerosis Patient.
Cheng-Cheng SONG ; Quan HONG ; Xiao-Dong GENG ; Xu WANG ; Shu-Qiang WANG ; Shao-Yuan CUI ; Man-Di GUO ; Ou LI ; Guang-Yan CAI ; Xiang-Mei CHEN ; Di WU
Chinese Medical Journal 2018;131(22):2666-2675
Background:
Focal segmental glomerulosclerosis (FSGS) is a kidney disease that is commonly associated with proteinuria and the progressive loss of renal function, which is characterized by podocyte injury and the depletion and collapse of glomerular capillary segments. The pathogenesis of FSGS has not been completely elucidated; however, recent advances in molecular genetics have provided increasing evidence that podocyte structural and functional disruption is central to FSGS pathogenesis. Here, we identified a patient with FSGS and aimed to characterize the pathogenic gene and verify its mechanism.
Methods:
Using next-generation sequencing and Sanger sequencing, we screened the causative gene that was linked to FSGS in this study. The patient's total blood RNA was extracted to validate the messenger RNA (mRNA) expression of coenzyme Q monooxygenase 6 (COQ6) and validated it by immunohistochemistry. COQ6 knockdown in podocytes was performed in vitro with small interfering RNA, and then, F-actin was determined using immunofluorescence staining. Cell apoptosis was evaluated by flow cytometry, the expression of active caspase-3 was determined by Western blot, and mitochondrial function was detected by MitoSOX.
Results:
Using whole-exome sequencing and Sanger sequencing, we screened a new causative gene, COQ6, NM_182480: exon1: c.G41A: p.W14X. The mRNA expression of COQ6 in the proband showed decreased. Moreover, the expression of COQ6, which was validated by immunohistochemistry, also had the same change in the proband. Finally, we focused on the COQ6 gene to clarify the mechanism of podocyte injury. Flow cytometry showed significantly increased in apoptotic podocytes, and Western blotting showed increases in active caspase-3 in si-COQ6 podocytes. Meanwhile, reactive oxygen species (ROS) levels were increased and F-actin immunofluorescence was irregularly distributed in the si-COQ6 group.
Conclusions
This study reported a possible mechanism for FSGS and suggested that a new mutation in COQ6, which could cause respiratory chain defect, increase the generation of ROS, destroy the podocyte cytoskeleton, and induce apoptosis. It provides basic theoretical basis for the screening of FSGS in the future.
Adolescent
;
Animals
;
Apoptosis
;
genetics
;
physiology
;
Cell Line
;
Female
;
Flow Cytometry
;
Glomerulosclerosis, Focal Segmental
;
genetics
;
Humans
;
Immunohistochemistry
;
Mice
;
Mutation
;
genetics
;
Podocytes
;
metabolism
;
pathology
;
RNA, Messenger
;
genetics
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Ubiquinone
;
analogs & derivatives
;
genetics
;
metabolism
7.The Levels of Cortisol and Oxidative Stress and DNA Damage in Child and Adolescent Victims of Sexual Abuse with or without Post-Traumatic Stress Disorder.
Seref ŞIMŞEK ; Tuğba YÜKSEL ; Ibrahim KAPLAN ; Cem UYSAL ; Hüseyin AKTAŞ
Psychiatry Investigation 2016;13(6):616-621
OBJECTIVE: The aim of this study was to investigate whether cortisol and oxidative stress levels and DNA damage differ between individuals who developed PTSD or not following a sexual trauma. METHODS: The study included 61 children aged between 5 and 17 years who sustained sexual abuse (M/F: 18/43). The patients were divided into two groups: patients with PTSD and patients without PTSD based, based on the results of a structured psychiatric interview (K-SADS-PL and CAPS-CA). Cortisol, glutathione peroxidase (GPx), superoxide dismutase (SOD), coenzyme Q, 8-Hydroxy-2-Deoxyguanosine (8-OHdG) were all evaluated by the ELISA method. RESULTS: Our evaluation revealed a diagnosis of PTSD in 51% (n=31) of victims. There was no significant difference between the groups with or without PTSD in terms of cortisol, GPx, SOD, coenzyme Q, and 8-OHdG levels. There was no correlation between CAPS scores and GPx, SOD, coenzyme Q, and 8-OHdG levels between patients with or without PTSD. In patients with PTSD, both cortisol and 8-OHdG levels decreased with increasing time after trauma, and there was no significant correlation with cortisol and 8-OHdG levels in patients without PTSD. CONCLUSION: Although the present study did not find any difference between the groups in terms of 8-OHdG concentrations, the decreases in both cortisol and 8-OHdG levels with increasing time after trauma is considered to indicate a relationship between cortisol and DNA damage.
Adolescent*
;
Child*
;
Diagnosis
;
DNA Damage*
;
DNA*
;
Enzyme-Linked Immunosorbent Assay
;
Glutathione Peroxidase
;
Humans
;
Hydrocortisone*
;
Methods
;
Oxidative Stress*
;
Sex Offenses*
;
Stress Disorders, Post-Traumatic*
;
Superoxide Dismutase
;
Ubiquinone
8.HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway.
Kan-Kan CHEN ; Zheng-Mei HE ; Bang-He DING ; Yue CHEN ; Li-Juan ZHANG ; Liang YU ; Jian GAO
Journal of Experimental Hematology 2016;24(1):117-121
OBJECTIVETo investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism.
METHODSThe multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively.
RESULTSThe 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P < 0.05 and r = -0.473, P < 0.05), while the culture medium without 17-AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P < 0.05); At same time of culture, the more high of 17-AAG concentration, the more high of cell ratio in G1 phase (P < 0.05), at same concentration of 17-AAG, the more long time of culture, the more high of cell ratio in G1 phase (P < 0.05).
CONCLUSIONThe HSP90 inhibitory 17-AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.
Apoptosis ; Benzoquinones ; pharmacology ; Cell Cycle ; Cell Division ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; drug effects ; Down-Regulation ; HSP90 Heat-Shock Proteins ; antagonists & inhibitors ; Humans ; Lactams, Macrocyclic ; pharmacology ; Multiple Myeloma ; metabolism ; pathology ; Proto-Oncogene Proteins c-myc ; metabolism ; Wnt Signaling Pathway ; drug effects ; beta Catenin ; metabolism
9.Idebenone Maintains Survival of Mutant Myocilin Cells by Inhibiting Apoptosis.
Yue GUAN ; Juan LI ; Tao ZHAN ; Jian-Wen WANG ; Jian-Bo YU ; Lan YANG
Chinese Medical Journal 2016;129(16):2001-2004
Animals
;
Apoptosis
;
drug effects
;
genetics
;
COS Cells
;
Cercopithecus aethiops
;
Cytoskeletal Proteins
;
genetics
;
metabolism
;
Eye Proteins
;
genetics
;
metabolism
;
Glaucoma, Open-Angle
;
genetics
;
metabolism
;
Glycoproteins
;
genetics
;
metabolism
;
Humans
;
Mutation
;
Ubiquinone
;
analogs & derivatives
;
pharmacology
10.Influence of Co-inhibiting mTORC2 and HSP90 on Proliferation Apoptosis of Multiple Myeloma Cells.
Kan-Kan CHEN ; Yue CHEN ; Zheng-Mei HE ; Li-Tao ZHOU ; Li-Juang ZHANG ; Li-Xiao SONG ; Bang-He DING ; Chun-Ling WANG ; Liang YU ; Jian-Wei ZHOU
Journal of Experimental Hematology 2016;24(4):1086-1090
UNLABELLEDObjective:To explore the influence of co-inhibiting mTORC2 and HSP90 on the proliferation and apoptosis of multiple myeloma(MM) cell line U266.
METHODSDuring culture, the human MM cell line U266 were treated with 20 nmol/L of rapamycin, 600 nmol/L 17-AAG, 20 nmol/L of rapamycin + 600 nmol/L 17-AGG and phosphate-buffered saline (PBS), then the growth inhibition rate, morphologic changes, apoptosis rate and the expression of caspase 3 and ATK protein in U266 cells were compared and analyzed.
RESULTSThe rapamycin and 17-AAG both could inhibit the growth of U266 cells, while the inhibitory effect of rapamycin in combination with 17-AAG on growth of U266 cells was significantly higher them that of rapamycin and 17-AAG alone and control (PBS); the apoptosis rate of U266 cells treated with rapamycin, 17-AAG and their combination was higher than that of control PBS groups, and the efficacy of 2 drug conbination was higher than that of control PBS group, and the efficacy of 2 drug combination was superior to single drug. The expression levels of caspase 3 and ATK in U266 cells treated with rapamycin, 17-AAG and their combination were higher and lower than those in control group respectively, and the efficacy of 2 drug combination was superior to signle drug. There were significant difference between them (P<0.05).
CONCLUSIONThe co-inhibition of mTORC2 and HSP90 can suppress the proliferation and induce the apoptosis of MM cells.
Apoptosis ; Benzoquinones ; Caspase 3 ; Cell Line, Tumor ; Cell Proliferation ; HSP90 Heat-Shock Proteins ; Humans ; Lactams, Macrocyclic ; Mechanistic Target of Rapamycin Complex 2 ; Multiple Myeloma ; Multiprotein Complexes ; Sirolimus ; TOR Serine-Threonine Kinases

Result Analysis
Print
Save
E-mail