1.Quality evaluation of Huocao based on UPLC fingerprint and multi-component content determination.
Zheng-Ming YANG ; Ci-Ga DIJIU ; Jian-Long LAN ; Jiang LUO ; Yue-Bu HAILAI ; Tao WANG ; Wen-Bing LI ; Ying LI ; Yuan LIU
China Journal of Chinese Materia Medica 2023;48(11):3000-3013
Huocao(a traditional Chinese herbal medicine) moxibustion is a characteristic technology in Yi medicine suitable for cold-dampness diseases. Huocao, as the moxibustion material, is confusedly used in clinical practice and little is known about its quality control. In this study, UPLC method was used to establish the chemical fingerprint of non-volatile components in Huocao, and the contents of eight phenolic acids such as chlorogenic acid were determined. Multivariate statistical analysis was performed to obtain the indicator components of Huocao for quality evaluation, and thus a comprehensive evaluation system for the quality of Huocao was built. The UPLC fingerprints of 49 batches of Huocao were established, and there were 20 common peaks, of which eight phenolic acids including neochlorogenic acid and chlorogenic acid were identified. Except for three batches of Huocao, the similarity of the other 46 batches was higher than 0.89, suggesting that the established fingerprint method could be used for quality control of the medicinal herb. The correlation coefficient between entropy weight score of the eight phenolic acids and comprehensive fingerprint score in Huocao was 0.875(P<0.01), which indicated that the eight phenolic acids could be used as indicator components for the quality evaluation of Huocao. Furthermore, in multivariate statistical analysis on the common peaks of fingerprint and the contents of the eight phenolic acids, chlorogenic acid, isochlorogenic acid A and isochlorogenic acid C were screened to be the indicator components. The results revealed that the proposed method achieved a simple and accurate quality control of Huocao based on UPLC fingerprint and multi-component content determination, which provided useful data for establishing the quality standard of Huocao.
Chlorogenic Acid
;
Entropy
;
Hydroxybenzoates
;
Quality Control
2.Decolorization and biodegradation of acid orange 7 by white-rot fungi.
Mengsi YOU ; Zhen ZHAO ; Min CHEN ; Yifan GENG
Chinese Journal of Biotechnology 2023;39(8):3436-3450
Azo dyes are widely used in textile, paper and packing industries, and have become one of the research hot spots in dye wastewater treatment because of their carcinogenicity, teratogenic mutagenicity, stable structure and degradation difficulty. In this study, the biodecolorization of acid orange 7 (AO7), an azo dye, by different white rot fungi was investigated, and the effect of different conditions on the decolorization rate of the dye was analyzed. At the same time, the degradation liquor was analyzed and the phytotoxicity experiment was performed to deduce the possible degradation pathway of AO7 and assess the toxicity of its degradation products. The results showed that the decolorization rate reached 93.46% in 24 h at pH 4.5, 28 ℃ by Pleurotus eryngii and Trametes versicolor when AO7 concentration was 100 mg/L. The biodegradation pathway of AO7 was initiated by the cleavage of the azo bond of AO7, generating p-aminobenzenesulfonic acid and 1-amino-2-naphthol. Subsequently, the sulfonic acid group of p-aminobenzene sulfonic acid was removed to generate hydroquinone. Moreover, the 1-amino-2-naphthol was de-ringed to generate phthalic acid and p-hydroxybenzaldehyde, and then further degraded into benzoic acid. Finally, hydroquinone and benzoic acid may be further oxidized into other small molecules, carbon dioxide and water. Phytotoxicity experiment showed that the toxicity of AO7 could be reduced by P. eryngii and T. versicolor.
Hydroquinones
;
Trametes
;
Azo Compounds
;
Benzoic Acid
3.Chemical and nutrient differences between medicinal material, residues, and residue compost of Moutan Cortex.
Rong-Qing ZHU ; Chun-Fang TIAN ; Xiao-Yan LAN ; Zi-Han WANG ; Xiang LI ; Li ZHOU ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2023;48(23):6361-6370
Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.
Animals
;
Composting
;
Fertilizers
;
Soil/chemistry*
;
Hydrolyzable Tannins
;
Nutrients
;
Acetophenones
;
Drugs, Chinese Herbal
;
Paeonia
4.Role of DNMT3a in Hydroquinone-Induced Hematopoietic Stem Cell Toxicity.
Kun WU ; Bo NIE ; Jin-Rong YANG ; Zheng-Xin HE ; Shen-Ju CHENG ; Yan-Hong LI ; Zhen JIN ; Ming-Xia SHI
Journal of Experimental Hematology 2022;30(2):607-612
OBJECTIVE:
To investigate the regulatory effect and mechanism of DNA methyltransferase 3A (DNMT3a) in hydroquinone-induced hematopoietic stem cell toxicity.
METHODS:
Cells (HSPC-1) were divided into 4 groups, that is A: normal HSPC-1; B: HQ-intervented HSPC-1; C: group B + pcDNA3 empty vector; D: group B + pcDNA3- DNMT3a. RT-qPCR and Western blot were used to detect the expression levels of DNMT3a and PARP-1 mRNA and protein, respectively. Cell morphology was observe; Cell viability and apoptosis rate of HSPC-1 were detected by MTT and flow cytometry, respectively.
RESULTS:
Compared with group A, the expression levels of DNMT3a mRNA and protein in HSPC-1 of group B were decreased, while PARP-1 mRNA and protein were increased (P<0.05); there was no significant difference in the above indexes between group C and group B; compared with group B, the expression levels of DNMT3a mRNA and protein showed increased, while PARP-1 mRNA and protein were decreased significantly in cells of group D transfected with DNMT3a (P<0.05). Cells in each group were transfected with DNMT3a and cultured for 24 h, HSPC-1 in group A showed high density growth and mononuclear fusion growth, while the number of HSPC-1 in group B and C decreased and grew slowly. Compared with group B and C, the cell growth rate of group D was accelerated. The MTT analysis showed that cell viability of HSPC-1 in group B were lower than that of group A at 24 h, 48 h and 72 h (P<0.05); after transfected with DNMT3a, the cell viability of HSPC-1 in group D were higher than that of group B at 24 h, 48 h and 72 h (P<0.05). The apoptosis rate of cells in group B was significantly higher than that of group A (P<0.001), while the apoptosis rate in group D was lower than that of group B (P<0.001).
CONCLUSION
DNMT3a may be involved in the damage of hematopoietic stem cells induced by hydroquinone, which may be related to the regulation of PARP-1 activity by hydroquinone-inhibited DNMT3a.
Apoptosis
;
Cell Proliferation
;
DNA Methyltransferase 3A
;
Hematopoietic Stem Cells/drug effects*
;
Humans
;
Hydroquinones/toxicity*
;
Poly (ADP-Ribose) Polymerase-1
;
RNA, Messenger/metabolism*
5.Research progress on antitumor effect and molecular mechanism of capsaicin.
Xin-Yue ZHOU ; Xia-Yang LIU ; Zhuang LI ; Xiao-Hong GUO
China Journal of Chinese Materia Medica 2022;47(16):4277-4283
Capsaicin is a lipid-soluble vanillin alkaloid extracted from Capsicum plants in the Solanaceae family, which is the main active ingredient in capsicum, with multiple functions such as anti-inflammation, analgesia, cardiovascular expansion, and gastric mucosa protection. Recently, capsaicin has been confirmed as a potential antitumor compound. It can induce cell cycle arrest, inhibit cancer cell proliferation, metastasis, invasion, and angiogenesis, and promote apoptosis or autophagy in malignancy cell models and animal models of lung cancer, breast cancer, gastric cancer, and liver cancer. Meanwhile, capsaicin shows a synergistic antitumor effect when combined with other antitumor drugs such as sorafenib. Based on the recent literature on the antitumor effect of capsaicin, the present study analyzed the molecular mechanism of capsaicin in resisting tumors by inducing apoptosis and reviewed the effects of capsaicin in inducing tumor cell cycle arrest, inhibiting tumor cell proliferation, metastasis, and angiogenesis, and combating tumors with other drugs, thereby providing a theoretical basis for further research of capsaicin and its rational development and utilization.
Animals
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
Capsaicin/therapeutic use*
;
Capsicum
;
Cell Line, Tumor
;
Cell Proliferation
;
Liver Neoplasms
6.Effect of Jinzhen Oral Liquid on cough after lipopolysaccharide-induced infection in rats and mechanism.
Shu-Juan XU ; Hao GUO ; Long JIN ; Zi-Xin LIU ; Gao-Jie XIN ; Yue YOU ; Wei HAO ; Jian-Hua FU ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(17):4707-4714
This study aims to explore the effect of Jinzhen Oral Liquid(JOL) on cough after infection in rats and the mechanism. To be specific, a total of 60 male SD rats were classified into 6 groups: normal group(equivalent volume of distilled water, ig), model group(equivalent volume of distilled water, ig), Dextromethorphan Hydrobromide Oral Solution group(3.67 mL·kg~(-1), ig), high-, medium-, and low-dose JOL groups(11.34, 5.67, and 2.84 mL·kg~(-1), respectively, ig). Lipopolysaccharide(LPS, nasal drip), smoking, and capsaicin(nebulization) were employed to induce cough after infection in rats except the normal group. Administration began on the 19 th day and lasted 7 days. Capsaicin(nebulization) was used to stimulate cough 1 h after the last administration and the cough frequency and cough incubation period in rats were recorded. The pathological morphology of lung tissue was observed based on hematoxylin-eosin(HE) staining. Immunohistochemistry(IHC) was used to detect the specific expression of transient receptor potential vanilloid 1(Trpv1), nerve growth factor(NGF), tropomyosin receptor kinase A(TrkA), and phosphorylated-p38 mitogen-activated protein kinase(p-p38 MAPK) in lung tissue, Western blot the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and real-time fluorescent quantitative polymerase chain reaction(real-time PCR) the mRNA expression of Trpv1, NGF, and TrkA. The results showed that model group demonstrated significantly high cough frequency, obvious proliferation and inflammatory cell infiltration in lung tissue, significantly enhanced positive protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue and significant increase in the mRNA expression of Trpv1, NGF, and TrkA compared with the normal group. Compared with the model group, JOL can significantly reduce the cough frequency, alleviate the pathological changes of lung tissue, and decrease the protein expression of Trpv1, NGF, TrkA, and p-p38 MAPK in lung tissue, and high-dose and medium-dose JOL can significantly lower the mRNA expression of Trpv1, NGF, and TrkA. This study revealed that JOL can effectively inhibit Trpv1 pathway-related proteins and improve cough after infection. The mechanism is that it reduces the expression of NGF, TrkA, and p-p38 MAPK in lung tissue, thereby decreasing the expression of Trpv1 and cough sensitivity.
Animals
;
Capsaicin/adverse effects*
;
Cough/drug therapy*
;
Dextromethorphan/adverse effects*
;
Eosine Yellowish-(YS)/adverse effects*
;
Hematoxylin
;
Lipopolysaccharides/adverse effects*
;
Male
;
Medicine, Chinese Traditional
;
Nerve Growth Factor/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, trkA/metabolism*
;
TRPV Cation Channels/metabolism*
;
Tropomyosin/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
7.Effects of Paclitaxel and Quizartinib Alone and in Combination on AML Cell Line MV4-11 and Its STAT5 Signal Pathway.
Zi-Wen BAI ; Mei-Qing WU ; Bao-Wen ZHOU ; Ze-Yan SHI ; Yi-Bin YAO ; Zhen-Fang LIU ; Ru-Li PANG ; Wei-Hua ZHAO
Journal of Experimental Hematology 2022;30(3):671-676
OBJECTIVE:
To investigate the effects of paclitaxel, quizartinib and their combination on proliferation, apoptosis and FLT3/STAT5 pathway of human leukemia cell line MV4-11 (FLT3-ITD+).
METHODS:
MV4-11 cells were treated with paclitaxel and quizartinib at different concentrations for 24 h, 48 h and 72 h, respectively, and then the two drugs were combined at 48 h to compare the inhibition of proliferation, the apoptosis rate was detected by flow cytometry, the expression of FLT3 and STAT5 mRNA was determined by fluorescence quantitative PCR, and the protein expression of FLT3, p-FLT3, STAT5 and p-STAT5 was determined by Western blot.
RESULTS:
Different combination groups of paclitaxel and quizartinib had synergistic inhibitory effect. The cell survival rate in the combination group was significantly lower than that in the single drug group (P<0.05). The cell apoptosis rate in the combination group was significantly higher than that in the single drug group (P<0.001). The expression of FLT3 mRNA in combination group was significantly higher than that in two single drugs (P<0.01). The expression of STAT5 mRNA in combination group was significantly higher than that in quizartinib group (P<0.001); increased compared with paclitaxel group, but there was no statistical significance. The expression level of p-FLT3、p-STAT5 protein in the combination group was significantly lower than that in the single drug group (P<0.05, P<0.05).
CONCLUSION
Paclitaxel combined with quizartinib can synergistically inhibit the proliferation of MV4-11 cell line and promote the apoptosis of MV4-11 cell line by inhibiting the activity of FLT3/STAT5 pathway.
Apoptosis
;
Benzothiazoles
;
Cell Line, Tumor
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Paclitaxel/therapeutic use*
;
Phenylurea Compounds
;
RNA, Messenger
;
STAT5 Transcription Factor/pharmacology*
;
Signal Transduction
;
fms-Like Tyrosine Kinase 3
8.The protective effects of diallyl sulfide (DAS) on genotoxicity induced by benzene.
Ting YU ; Xiang Xin LI ; Ren Qiang CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):568-572
Objective: To investigate the protective effect of diallyl sulfide (DAS) , against benzene-induced genetic damage in rat. Methods: In September 2018, Sixty adult male adaptive feeding 5 days, were randomly divided into six groups according to their weight. Control groups, DAS control groups, benzene model groups, benzene+low DAS groups, benzene+middle DAS groups, benzene+High DAS group, 10 in each group. Rats in the DAS and DAS control group were orally given DAS at 40, 80, 160, 160 mg/kg, blank control and benzene model groups were given corn oil in the same volume. 2 h later, the rats in the benzene model and DAS treatment groups were given gavage administration of benzene (1.3 g/kg) mixed with corn oil (50%, V/V) , blank and DAS control groups were given corn oil in the same volume. Once a day, for 4 weeks. Samples were collected for subsequent testing. Results: Compared with the blank control group, In benzene treated rat, peripheral WBC count was reduced 65.06% (P=0.003) , lymphocyte ratiowas reduced (P=0.000) , micronucleus rate was increased (P=0.000) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in BMCs were increased 32.69%、32.64% (P=0.001、0.008) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in PBLs were increased 397.70%、396.26% (P=0.000、P=0.003) respectively. Compared with the benzene model group, the WBC count increased respectively (P=0.000、0.003、0.006) and the micronucleus rate decreased (P=0.000、0.000、0.000) in the DAS groups, Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in BMCs were significantly reduced in the high DAS groups (P=0.000、0.000) , Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in PBLs were significantly reduced in the low, middle, high DAS groups (P=0.000、0.000) . Conclusion: DAS can effectively suppress benzene induced genotoxic damage in rats.
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives*
;
Allyl Compounds/pharmacology*
;
Animals
;
Benzene/toxicity*
;
Corn Oil
;
DNA Damage
;
Male
;
Rats
;
Sulfides/pharmacology*
9.Effects of p16/pRb and JNK signaling pathways in hydroquinone-induced malignant transformation of TK6 cells.
Lin CHEN ; Wei Feng QIU ; Zhi Ming CUI ; Hui YANG ; Huan Wen TANG ; Hao LUO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(10):721-726
Objective: To investigate the cell cycle and apoptosis in hydroquinone (HQ) -induced malignant transformation of TK6 cells and its related regulatory mechanisms. Methods: TK6 cells were exposed to 20 μmol/L HQ, 24 h/time, once a week, for 19 weeks as experimental group and TK6 cells treated with phosphate buffer (PBS) for 19 weeks was used as control group from March 2014. In regulatory mechanism research, the cells were divided into four groups: control group, experimental group, control inhibitor group and experimental inhibitor group (inhibitor groups were added 10 μmol/L P600125) . Cell cycle and apoptosis were detected by flow cytometry. The protein expression of cell cycle-related proteins and JNK signaling pathway proteins were detected by Western blot. Results: Flow cytometry showed that compared with control group, the ratio of cells in the G0/G1 phase of the experimental group was significantly decreased (P=0.001) , and the ratio of cells in the S phase was significantly increased (P=0.002) . Western blotting demonstrated that the protein expressions of p-Rb (Ser780) , E2F1, Cyclin D1, p-p16 (Ser152) , JNK1, p-JNK1 (Thr183/Tyr185) , c-jun, p-c-jun (Ser63) (P=0.015, 0.021, 0.001, 0.001, 0.005, 0.001, 0.039, 0.003) were up-regulated, while the protein expressions of Rb (P=0.048) and p16 (P=0.002) were significantly down-regulated. After exposed to SP600125, compared with experimental group, there were no significant changes in cell cycle distribution (P=0.946) and apoptosis rate (P=0.923) in experimental inhibitor group. The expression of c-jun (P=0.040) protein was down-regulated, while the expression of Rb (P=0.027) protein was up-regulated in experimental inhibitor group. Conclusion: In HQ-induced TK6 cells malignant transformation, the cell cycle is arrested in the S phase, and the p16/pRb signaling pathway is inhibited, while the JNK signaling pathway is activated. However, the activated JNK signaling pathway may not be involved in the regulation of cell cycle.
Humans
;
Hydroquinones/toxicity*
;
MAP Kinase Signaling System
;
Cell Cycle
;
Cell Transformation, Neoplastic
;
Apoptosis
10.Determination of six benzene homologues in human blood by purge and trap-gas chromatography-mass spectrometry.
Jing Qi LAI ; Lang Jing DENG ; Fen Dong FENG ; Shao Yang LAI ; Xiao Li YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):857-860
Objective: To establish a purge and trap-gas chromatography-mass spectrometry method based on soil analysis model for the determination of six benzene homologues (benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene) in human blood. Methods: From September 2020 to May 2021, diatomite was used as a dispersant to add 2.0 ml blood sample and fully mixed. The sample was directly injected into the purging and collecting bottle after purging. The gas chromatography column was used for separation. The retention time locking was used for qualitative analysis and the selected ion scanning mode (SIM) was used for detection. The detection limit and recovery rate of the method were analyzed. Results: The linear range of the method for the determination of six benzene homologues in human blood was 0.02-10.00 ng/ml, the correlation coefficient was 0.9927-0.9968, the detection limit was 0.006-0.016 ng/ml, the recovery rate of sample spiking was 84.39%-102.41%, and the precision of the method was 3.06%-6.90%. Conclusion: Purge and trap-gas chromatography-mass spectrometry can simultaneously determine the contents of six benzene homologues in human blood. The pretreatment method is simple, time-saving, and the method has low detection limit, which provides a scientific basis for the detection of benzene homologues in human body.
Humans
;
Benzene/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Xylenes/analysis*
;
Benzene Derivatives/analysis*
;
Toluene/analysis*

Result Analysis
Print
Save
E-mail