1.Structural Analysis and Characterization of 4-F-α-PVP Analog 4-F-3-Methyl-α- PVP Hydrochloride.
Hao-Yang WANG ; Jian WU ; Qian ZHANG ; Xin-Feng MIN ; Xiu-Yan LIU ; Yin-Long GUO
Journal of Forensic Medicine 2023;39(2):144-150
OBJECTIVES:
To identify 1-(4-fluorophenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-α-PVP) analog 1-(4-fluoro-3-methyl phenyl)-2-(1-pyrrolidinyl) pentan-1-one (4-F-3-Methyl-α-PVP) hydrochloride without reference substance.
METHODS:
The direct-injection electron ionization-mass spectrometry (EI-MS), GC-MS, electrospray ionization-high resolution mass spectrometry (ESI-HRMS), ultra-high performance liquid chromatography-high resolution tandem mass spectrometry (UPLC-HRMS/MS), nuclear magnetic resonance (NMR), ion chromatography and Fourier transform infrared spectroscopy (FTIR) were integrated utilized to achieve the structural analysis and characterization of the unknown compound in the sample, and the cleavage mechanism of the fragment ions was deduced by EI-MS and UPLC-HRMS/MS.
RESULTS:
By analyzing the direct-injection EI-MS, GC-MS, ESI-HRMS and UPLC-HRMS/MS of the compound in the samples, it was concluded that the unknown compound was a structural analog of 4-F-α-PVP, possibly with one more methyl group in the benzene ring. According to the analysis results of 1H-NMR and 13C-NMR, it was further proved that the methyl group is located at the 3-position of the benzene ring. Since the actual number of hydrogen in 1H-NMR analysis was one more than 4-F-3-Methyl-α-PVP neutral molecule, it was inferred that the compound existed in the form of salt. Ion chromatography analysis results showed that the compound contained chlorine anion (content 11.14%-11.16%), with the structural analysis of main functional group information by FTIR, the unknown compound was finally determined to be 4-F-3-Methyl-α-PVP hydrochloride.
CONCLUSIONS
A comprehensive method using EI-MS, GC-MS, ESI-HRMS, UPLC-HRMS/MS, NMR, ion chromatography and FTIR to identify 4-F-3-Methyl-α-PVP hydrochloride in samples is established, which will be helpful for the forensic science laboratory to identify this compound or other analog compounds.
Benzene
;
Gas Chromatography-Mass Spectrometry/methods*
;
Spectrometry, Mass, Electrospray Ionization
;
Chromatography, High Pressure Liquid/methods*
2.Hyperoxia caused intestinal metabolism disorder in mice.
Wen ZHANG ; Tao CHEN ; Bao FU ; Huajun CHEN ; Xiaoyun FU ; Zhouxiong XING
Chinese Critical Care Medicine 2023;35(9):980-983
OBJECTIVE:
To investigate the effect of hyperoxia on intestinal metabolomics in mice.
METHODS:
Sixteen 8-week-old male C57BL/6 mice were randomly divided into hyperoxia group and control group, with 8 mice in each group. The hyperoxia group was exposed to 80% oxygen for 14 days. Mice were anesthetized and euthanized, and cecal contents were collected for untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) combined detection. Orthogonal partial least square discriminant analysis (OPLS-DA), volcano plot analysis, heat map analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the effects of hyperoxia on metabolism.
RESULTS:
(1) OPLS-DA analysis showed that R2Y was 0.967 and Q2 was 0.796, indicating that the model was reliable. (2) Volcano plot and heat map analysis showed significant statistical differences in the expression levels of metabolites between the two groups, with 541 up-regulated metabolites, 64 down-regulated metabolites, and 907 no differences, while the elevated 5-hydroxy-L-lysine was the most significant differential metabolite induced by high oxygen. (3) KEGG pathway enrichment analysis showed that porphyrin and chlorophyll metabolism (P = 0.005), lysine degradation (P = 0.047), and aromatic compound degradation (P = 0.024) were the targets affected by hyperoxia. (4) Differential analysis of metabolic products through KEGG enrichment pathway showed that hyperoxia had a significant impact on the metabolism of porphyrin and chlorophyll, lysine, and aromatic compounds such as benzene and o-cresol.
CONCLUSIONS
Hyperoxia significantly induces intestinal metabolic disorders. Hyperoxia enhances the metabolism of porphyrins and chlorophyll, inhibits the degradation of lysine, and delays the degradation of aromatic compounds such as benzene and o-cresol.
Mice
;
Male
;
Animals
;
Lysine
;
Hyperoxia
;
Benzene
;
Mice, Inbred C57BL
;
Metabolic Diseases
;
Oxygen
;
Chlorophyll
;
Porphyrins
;
Biomarkers/metabolism*
3.Study on revision of standard limits for benzene in"Standards for indoor air quality(GB/T 18883-2022)"in China.
Guo Min CHEN ; Tian Tian LI ; Yan Jun DU ; Shuai JIANG ; Dao Kui FANG ; Xiao Heng LI ; Ning LIU ; Shu Yuan YU
Chinese Journal of Preventive Medicine 2023;57(11):1752-1755
Benzene, as a major indoor pollutant, has received widespread attention. In order to better control indoor benzene pollution and protect people's health, the limit value of benzene in the"Standards for indoor air quality (GB/T 18883-2022)'' was reduced from 0.11 mg/m3 to 0.03 mg/m3. This study reviewed and discussed the relevant technical contents of the determination of benzene limit value, including the exposure status of benzene, health effects, and derivation of the limit value. It also proposed prospects for the future direction of formulating indoor air benzene standards.
Humans
;
Air Pollution, Indoor/prevention & control*
;
Benzene/analysis*
;
Air Pollutants/analysis*
;
Environmental Pollutants
;
China
;
Environmental Monitoring
4.Study on revision of standard limits for benzene in"Standards for indoor air quality(GB/T 18883-2022)"in China.
Guo Min CHEN ; Tian Tian LI ; Yan Jun DU ; Shuai JIANG ; Dao Kui FANG ; Xiao Heng LI ; Ning LIU ; Shu Yuan YU
Chinese Journal of Preventive Medicine 2023;57(11):1752-1755
Benzene, as a major indoor pollutant, has received widespread attention. In order to better control indoor benzene pollution and protect people's health, the limit value of benzene in the"Standards for indoor air quality (GB/T 18883-2022)'' was reduced from 0.11 mg/m3 to 0.03 mg/m3. This study reviewed and discussed the relevant technical contents of the determination of benzene limit value, including the exposure status of benzene, health effects, and derivation of the limit value. It also proposed prospects for the future direction of formulating indoor air benzene standards.
Humans
;
Air Pollution, Indoor/prevention & control*
;
Benzene/analysis*
;
Air Pollutants/analysis*
;
Environmental Pollutants
;
China
;
Environmental Monitoring
5.Release rule of volatile components of moxa sticks with increase of temperature.
Li CHEN ; Qing-Song XUE ; Qi-Hao XUE
Chinese Acupuncture & Moxibustion 2022;42(8):884-888
OBJECTIVE:
To systematically investigate the changes rule of volatile oil and its main components released from moxa sticks under different headspace temperatures and combustion conditions, so as to guide the clinical rational selection of the temperature for moxa sticks.
METHODS:
Using the headspace gas chromatography-mass spectrometry (HS-GCMS) technique, the released gas from moxa sticks was collected at the headspace temperature (from room temperature [25 ℃] to 190 ℃) and during combustion. One mL of the gas was injected into 6890/5973N gas chromatography-mass spectrometry (GCMS). The release rates of volatile components of moxa sticks were calculated by total ion chromatography (TIC) and butanone internal standard method. The volatile components of moxa sticks were qualitatively analyzed by analyzing the mass spectra of each volatile component and matching the Nist 14 standard mass spectrometry library. By comparing and analyzing the peak intensity changes rule of 1,8-cineole and its main harmful components (benzene, toluene and phenol) under different headspace temperatures and combustion conditions, the optimal temperature for clinical use of moxa sticks was found.
RESULTS:
At room temperature and 50 ℃, the release rate of volatile components from moxa sticks was very low, and it showed a significant increase trend with the increase of temperature. When the headspace temperature was 190 ℃, the release rate of volatile components from moxa sticks reached 0.864 2%, which was 2 161 times as same as that at room temperature. After combustion, it dropped sharply to 0.027 9%, which was 96.8% lower than that at the headspace temperature of 190 ℃. When the headspace temperature was 125 ℃ and 150 ℃, the content of 1,8-cineole, a typical beneficial component in the volatile components of moxa sticks, was the highest. When the headspace temperature was higher than 150 ℃, its content showed a significant downward trend. Under combustion conditions, a large number of harmful substances, such as benzene, toluene and phenol, were detected.
CONCLUSION
The combustion condition is not conducive to the efficient utilization of the volatile oil of moxa sticks. Temperature of 125-150 ℃ is the best for releasing the volatile components of moxa sticks, which is not only conducive to the release of the beneficial volatile components of moxa sticks, but also can greatly inhibit the production of harmful components.
Benzene
;
Eucalyptol
;
Oils, Volatile
;
Phenols
;
Temperature
;
Toluene
6.The protective effects of diallyl sulfide (DAS) on genotoxicity induced by benzene.
Ting YU ; Xiang Xin LI ; Ren Qiang CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):568-572
Objective: To investigate the protective effect of diallyl sulfide (DAS) , against benzene-induced genetic damage in rat. Methods: In September 2018, Sixty adult male adaptive feeding 5 days, were randomly divided into six groups according to their weight. Control groups, DAS control groups, benzene model groups, benzene+low DAS groups, benzene+middle DAS groups, benzene+High DAS group, 10 in each group. Rats in the DAS and DAS control group were orally given DAS at 40, 80, 160, 160 mg/kg, blank control and benzene model groups were given corn oil in the same volume. 2 h later, the rats in the benzene model and DAS treatment groups were given gavage administration of benzene (1.3 g/kg) mixed with corn oil (50%, V/V) , blank and DAS control groups were given corn oil in the same volume. Once a day, for 4 weeks. Samples were collected for subsequent testing. Results: Compared with the blank control group, In benzene treated rat, peripheral WBC count was reduced 65.06% (P=0.003) , lymphocyte ratiowas reduced (P=0.000) , micronucleus rate was increased (P=0.000) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in BMCs were increased 32.69%、32.64% (P=0.001、0.008) , Mean fluorescent intensity and relative fluorescence intensity of γH2AX in PBLs were increased 397.70%、396.26% (P=0.000、P=0.003) respectively. Compared with the benzene model group, the WBC count increased respectively (P=0.000、0.003、0.006) and the micronucleus rate decreased (P=0.000、0.000、0.000) in the DAS groups, Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in BMCs were significantly reduced in the high DAS groups (P=0.000、0.000) , Mean fluorescent intensity and relative fluorescence intensity ofγH2AX in PBLs were significantly reduced in the low, middle, high DAS groups (P=0.000、0.000) . Conclusion: DAS can effectively suppress benzene induced genotoxic damage in rats.
4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/analogs & derivatives*
;
Allyl Compounds/pharmacology*
;
Animals
;
Benzene/toxicity*
;
Corn Oil
;
DNA Damage
;
Male
;
Rats
;
Sulfides/pharmacology*
7.Analysis of 15 cases of toxic encephalopathy caused by acute benzene poisoning.
Qiong Na ZHENG ; Wen Shuang SHENG ; A Shan PAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(9):694-697
In this paper, the MRI manifestations of 15 patients with benzene toxic encephalopathy were analyzed, and the lesion location, shape, scope and signal were observed. The clinical manifestations of 15 patients were mainly central nervous system damage, and the MRI manifestations were characteristic, with a wide range of lesions, and the shapes were "sunflower-like", "flame-like", "bracket-like" and "butterfly-like", and the MRI signal was sheet-like long T(1), long T(2), fluid attenuated inversion recovery (FLAIR) sequence and diffusion weighted imaging (DWI) high signal, apparent diffusion coeffecient (ADC) map low, equal or high signals. When the patient's diagnosis is unclear, MRI examination may provide clinical basis for diagnosis.
Benzene
;
Diffusion Magnetic Resonance Imaging/methods*
;
Humans
;
Magnetic Resonance Imaging
;
Neurotoxicity Syndromes/etiology*
8.Determination of six benzene homologues in human blood by purge and trap-gas chromatography-mass spectrometry.
Jing Qi LAI ; Lang Jing DENG ; Fen Dong FENG ; Shao Yang LAI ; Xiao Li YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):857-860
Objective: To establish a purge and trap-gas chromatography-mass spectrometry method based on soil analysis model for the determination of six benzene homologues (benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene) in human blood. Methods: From September 2020 to May 2021, diatomite was used as a dispersant to add 2.0 ml blood sample and fully mixed. The sample was directly injected into the purging and collecting bottle after purging. The gas chromatography column was used for separation. The retention time locking was used for qualitative analysis and the selected ion scanning mode (SIM) was used for detection. The detection limit and recovery rate of the method were analyzed. Results: The linear range of the method for the determination of six benzene homologues in human blood was 0.02-10.00 ng/ml, the correlation coefficient was 0.9927-0.9968, the detection limit was 0.006-0.016 ng/ml, the recovery rate of sample spiking was 84.39%-102.41%, and the precision of the method was 3.06%-6.90%. Conclusion: Purge and trap-gas chromatography-mass spectrometry can simultaneously determine the contents of six benzene homologues in human blood. The pretreatment method is simple, time-saving, and the method has low detection limit, which provides a scientific basis for the detection of benzene homologues in human body.
Humans
;
Benzene/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Xylenes/analysis*
;
Benzene Derivatives/analysis*
;
Toluene/analysis*
9.Analysis of volatile organic components of organic solvents used in Bao'an District of Shenzhen.
Li Hua WANG ; Zhi Liang ZHU ; Zhi Teng DAI ; Jing FENG ; Shao Fan WENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(11):867-871
Objective: To understand the volatile organic components in the organic solvents used by enterprises in Baoan District, Shenzhen. Methods: From January to December 2020, a total of 541 organic solvent samples used by 86 companies were collected for volatile organic component analysis, and the main volatile components and high-risk occupational hazards in organic solvents used in different industries were analyzed. Results: A total of 201 volatile organic components were detected in 541 organic solvents. The top 5 components detected include xylene (29.76%, 116/541), toluene (21.81%, 118/541), methanol (20.70%, 112/541), n-hexane (14.79%, 80/541) and ethylbenzene (14.23%, 77/541). The detection rates of benzene, trichloroethylene, n-hexane, and 1, 2-dichloroethane, which were high-risk occupational hazards, were 2.40% (13/541), 3.70% (20/541), 14.79% (80/541), and 1.66% (9/541), respectively. The volatile components in organic solvents used in different industries was different. Benzene is more frequently detected in organic solvents used in the printing industry, trichloroethylene was more frequently detected in organic solvents used in the electronics industry, and n-hexane was more commonly found in organic solvents used in the electronics industry, printing and other industries, and 1, 2-dichloroethane has been more frequently detected in organic solvents used in the machinery industry. Conclusion: There are many types of organic solvents used by enterprises in Bao'an District, with complex components and differences in different industries.
Benzene/analysis*
;
Hexanes
;
Solvents
;
Industry
;
Trichloroethylene
10.Investigation and case analysis of an occupational chronic benzene poisoning accident.
Si Qi CUI ; Long Ke SHI ; Li Wen ZHAO ; Ya Qian LI ; Xiang Dong JIAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(1):69-71
This article investigated an occupational chronic benzene poisoning incident that occurred in a sealing material factory in Hebei Province in September 2019, analyzed the clinical data of workers, to explore the causes of occupational chronic benzene poisoning, and summarize the diagnosis and treatment characteristics and treatment outcome. According to GBZ 68-2013 "Diagnosis of Occupational Benzene Poisoning", a total of 12 cases of occupational chronic benzene poisoning were diagnosed among the 20 workers, including 2 cases of occupational chronic mild benzene poisoning, 7 cases of moderate benzene poisoning, and 3 cases of severe benzene poisoning. Both mild and moderate poisoning patients had recovered after treatment. Severely poisoned patients had recovered more slowly, and the white blood cell count was still 2.0×10(9)-3.0×10(9)/L during the 1-year follow-up. This benzene poisoning incident was caused by illegal operations. The responsibility of the employer, the supervision of the administrative agency, and the awareness of personal protection of employees should be strengthened to avoid or reduce the occurrence of poisoning incidents and ensure the health of workers.
Accidents, Occupational
;
Benzene/analysis*
;
Chronic Disease
;
Humans
;
Leukocyte Count
;
Occupational Diseases/epidemiology*
;
Occupational Exposure/analysis*
;
Poisoning

Result Analysis
Print
Save
E-mail