1.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.Effect and Safety of a New Conditioning Regimen with Chidamide and BEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma.
Sen LI ; Jin-Jie GAO ; Yan LI ; Fei DONG ; Qi-Hui LI ; Wei ZHAO ; Wei WAN ; Ping YANG ; Ji-Jun WANG ; Hong-Mei JING
Journal of Experimental Hematology 2025;33(1):121-126
OBJECTIVE:
To assess the efficacy and safety of a new conditioning regimen with chidamide and BEAM for autologous hematopoietic stem cell transplantation (AHSCT) in patients with lymphoma.
METHODS:
Medical records and further follow-up data from 85 patients with lymphoma from May 2015 to September 2020 in our hospital were retrospectively collected and analyzed.
RESULTS:
Among 85 patients, 52 cases accepted BEAM regimen and 33 cases accepted CBEAM followed by AHSCT. In CBEAM group, 18 patients (54.5%) received AHSCT as salvage therapy, while only 26.9% (14 cases) for salvage in BEAM group ( P < 0.01). CBEAM conditioning resulted in shorter neutrophil engraftment of 2 days, while no significant difference was found in platelet engraftment. Although the incidence of liver impairment was higher in CBEAM group (12.1%), the grade of impairment was only Ⅰ to Ⅱ. The two conditioning regimens both achieved good complete remission rate of over 90%, and no transplant-related death occurred. The median follow-up time in the CBEAM group was 18(12, 22) months, and 39(20, 59) months in the BEAM group. There were no significantly differences in 2-year progression-free survival (PFS) and overall survival (OS) rate between the two groups (P >0.05). In patients with refractory or relapsed non-Hodgkin lymphoma, the 2-year PFS rate after transplantation in BEAM group and CBEAM group was 74.1% and 92.9%, respectively (P >0.05), indicating that chidamide may have certain advantages in prolonging PFS.
CONCLUSION
CBEAM conditioning regimen has a good efficacy and safety in lymphoma patients before AHSCT, especially in refractory and relapsed non-Hodgkin lymphoma patients, suggesting that it could serve as an alternative conditioning regimen prior to AHSCT for lymphoma.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Transplantation Conditioning/methods*
;
Transplantation, Autologous
;
Retrospective Studies
;
Aminopyridines/therapeutic use*
;
Lymphoma/therapy*
;
Benzamides/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Male
;
Female
;
Cytarabine/therapeutic use*
;
Melphalan/therapeutic use*
;
Adult
;
Middle Aged
;
Podophyllotoxin/therapeutic use*
;
Carmustine
;
Etoposide
4.Efficacy and Survival Analysis of Chidamide Combined with DICE Regimen in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma.
Li-Li WU ; Li SHI ; Wei-Jing LI ; Wei LIU ; Yun FENG ; Shao-Ning YIN ; Cui-Ying HE ; Li-Hong LIU
Journal of Experimental Hematology 2025;33(2):373-378
OBJECTIVE:
To investigate the efficacy and safety of chidamide combined with DICE regimen (cisplatin+ ifosfamide + etoposide + dexamethasone) for relapsed/refractory diffuse large B-cell lymphome(R/R DLBCL).
METHODS:
The clinical data of 31 R/R DLBCL patients treated by chidamide combined with DICE regimen in the Hematology Department of the Fourth Hospital of Hebei Medical University from October 2016 to October 2020 were retrospectively analyzed. The clinical efficacy and adverse events were observed.
RESULTS:
Among the 31 patients, 20 were male and 11 were female. The median age of the patients was 55 (range: 27-71) years old, 21 cases were < 60 years old, 10 cases were ≥60 years old. 26 cases were refractory and 5 cases were relapsed. There were 13 cases of germinal center B-cell like (GCB), 17 cases of non-GCB, and 1 case had missing Hans type. There were 17 cases of double-expression lymphoma (DEL) and 14 cases of non-DEL. The complete response rate of patients was 38.7%(12/31), the overall response rate was 67.7%(21/31). The median progression-free survival time and the median overall survival time were 9.8(95%CI : 4.048-15.552) months, 13.9(95%CI : 9.294-18.506) months, respectively. Multipvariate analysis showed that GCB and DEL reduced the risk of disease recurrence in R/R DLBCL patients. The main grade 3/4 hematological adverse events in this study were thrombocytopenia, agranulocytosis, anemia and leukopenia.
CONCLUSION
The chidamide combined with DICE regimen is effective in the treatment of R/R DLBCL, and hematological adverse events should be closely monitored.
Humans
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Middle Aged
;
Female
;
Male
;
Adult
;
Aged
;
Retrospective Studies
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Benzamides/administration & dosage*
;
Aminopyridines/administration & dosage*
;
Etoposide/therapeutic use*
;
Cisplatin/administration & dosage*
;
Ifosfamide/administration & dosage*
;
Dexamethasone/therapeutic use*
5.Clinical Efficacy of CAG Regimen Combined with Venetoclax, Chidamide, and Azacitidine in the Treatment of Elderly Patients with Acute Myeloid Leukemia.
Qing-Yang LIU ; Yu JING ; Meng LI ; Sai HUANG ; Yu-Chen LIU ; Ya-Nan WEN ; Jing-Jing YANG ; Wen-Jing GAO ; Ning LE ; Yi-Fan JIAO ; Xia-Wei ZHANG ; Li-Ping DOU
Journal of Experimental Hematology 2025;33(4):945-950
OBJECTIVE:
To explore the efficacy and adverse reactions of CAG regimen combined with venetoclax, chidamide, and azacitidine in the treatment of elderly patients with acute myeloid leukemia (AML).
METHODS:
15 elderly AML patients aged≥60 years old who were admitted to the Hematology Department of our hospital from May 2022 to October 2023 were treated with the CAG regimen combined with venetoclax, chidamide and azacitidine, and the efficacy, treatment-related adverse events, overall survival (OS) and event-free survival (EFS) were analyzed.
RESULTS:
After one course of treatment, 11 out of 15 patients achieved complete response (CR), 3 patients achieved CR with incomplete hematologic recovery (CRi), and 1 patient died due to prior infection before efficacy evaluation, and the overall response rate (ORR) was 93.3% (14/15). The median follow-up time was 131 (19-275) days, with median OS and EFS both remaining unreached. Next-generation sequencing (NGS) analysis showed that among the 15 patients, 13 were detected with gene mutations, and there were 7 genes with mutation frequencies of more than 10%, including ASXL1 (4 cases), RUNX1 (4 cases), BCOR (3 cases), DNMT3A (3 cases), STAG2 (2 cases), IDH1/2 (2 cases), and TET (2 cases). Among the 13 patients with detectable mutations, 12 patients achieved composite response (CR+CRi). The average recovery time of white blood cell count was 14.6 days after chemotherapy, and the average recovery time of platelets was 7.7 days after chemotherapy. The main adverse event was myelosuppression, with 10 patients accompanied by infection. Except for 1 patient who died due to septic shock during chemotherapy, no patients experienced serious complications such as heart, liver, or kidney damage during the treatment process.
CONCLUSION
The CACAG+V regimen, which combines the CAG regimen with venetoclax, chidamide, and azacitidine, can be applied in the treatment of elderly AML patients, demonstrating good safety and induction remission rate.
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use*
;
Sulfonamides/therapeutic use*
;
Aminopyridines/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Azacitidine/therapeutic use*
;
Aged
;
Benzamides/therapeutic use*
;
Male
;
Female
;
Treatment Outcome
;
Middle Aged
;
Cytarabine
;
Aclarubicin
;
Granulocyte Colony-Stimulating Factor
6.Synergistic Effect of Combination of Flumatinib with Chidamide in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia.
Chen-Yan YANG ; Chan YANG ; Zheng GE
Journal of Experimental Hematology 2025;33(4):951-960
OBJECTIVE:
To explore the synergistic effect of flumatinib (FLU) combined with histone deacetylase inhibitor chidamide (CHI) and underlying mechanism on Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) SUP-B15 cells.
METHODS:
CCK-8 method was used to examine the effects of FLU, CHI alone and combination therapy on the proliferation of SUP-B15 cells. Flow cytometry was utilized to analyze the cell cycle and apoptosis. RT-qPCR and Western blot methods were performed to detect target gene expression.
RESULTS:
FLU combined with CHI significantly inhibited the proliferation, induced G0/G1 phase arrest, and increased the apoptosis rate in SUP-B15 cells compared with FLU and CHI alone. The 50 genes were identified by overlapping the two drugs' targets of action with Ph+ ALL oncogenic genes in the public databases, and p53 and c-Myc transcription factors and PI3K/AKT signaling pathways were enriched in the overlapped genes. The combination of FLU and CHI significantly reduced the mRNA level of BCR::ABL fusion gene, up-regulated the protein and mRNA levels of p53, BAX, and Caspase-3, and down-regulated the protein and mRNA levels of c-Myc, PIK3CA, PIK3CB, and AKT2 compared with single-drug therapy. The analysis of GEO database and our center cohort showed that c-Myc, PIK3CA, PIK3CB, and AKT2 were significantly up-regulated while p53 was down-regulated in Ph+ ALL patients compared to healthy controls.
CONCLUSION
FLU combined with CHI synergistically inhibits cell proliferation, promotes apoptosis, and induces cycle arrest by targeting the PI3K/AKT signaling pathway through the p53/c-Myc axis in Ph+ ALL.
Humans
;
Aminopyridines/pharmacology*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Apoptosis/drug effects*
;
Benzamides/pharmacology*
;
Cell Proliferation/drug effects*
;
Philadelphia Chromosome
;
Drug Synergism
;
Cell Line, Tumor
;
Signal Transduction
;
Pyridines/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
7.Clinical observation of flumatinib combined with induction chemotherapy and sequential allogeneic hematopoietic stem cell transplantation in the treatment of 6 patients with newly diagnosed Ph(+) acute lymphocytic leukemia.
Xia Ying LIAN ; Hai Ping DAI ; Qing Ya CUI ; Xiao Wen TANG
Chinese Journal of Hematology 2023;44(2):169-172
8.Efficacy and Safety of Flumatinib in Treatment of Patients with Chronic Myeloid Leukemia.
Qian ZHANG ; Ling QI ; De-Xiang JI ; Fei LI
Journal of Experimental Hematology 2023;31(4):1014-1018
OBJECTIVE:
To analyze the efficacy and safety of flumatinib in the treatment of patients with chronic myeloid leukemia (CML).
METHODS:
The clinical data of 56 CML patients treated with flumatinib from January 2020 to December 2021 in the First Affiliated Hospital of Nanchang University were retrospectively analyzed. Patients were divided into three groups: 35 new diagnosed CML patients treated with flumatinib (group A), 10 patients with imatinib/dasatinib intolerance (group B) and 11 patients with imatinib/dasatinib resistance (group C) switched to flumatinib treatment, respectively. The molecular response and adverse effects of flumatinib treatment were evaluated.
RESULTS:
In group A, the early molecular response (EMR) at 3 months was 40.0%, and the major molecular response (MMR) at 6 and 12 months was 43.7% and 46.2%, respectively. In group B, the EMR was 50.0% at 3 months, and the MMR was 70.0% and 66.2% at 6 and 12 months, respectively. Among evaluable patients, 6 cases in group B achieved molecular response of 4.5 (MR4.5) at 12 months after switching to flumatinib treatment. In group C, 3 cases who switched from imatinib resistance to flumatinib achieved MR4.5 at 12 months, but 2 cases who switched from dasatinib resistance to flumatinib failed. Subgroup analysis showed significant differences in EUTOS long-term survival (ELTS) scores for patients in the medium-risk/high-risk group compared with those in the low-risk group for 3-month EMR (18.8% vs 57.9%), 6-month MMR (15.4% vs 63.2%) and 12-month MR4.5 (15.4% vs 69.2%) (P =0.036, P =0.012,P =0.015). The most common adverse effect in group A was thrombocytopenia, accounting for 54.5%, and 22.8% (8/35) patients discontinued the drug due to haematological adverse effects. Compared with patients who did not discontinue the drug or whose recovery time from discontinuation due to haematological toxicity was <1 month, patients whose recovery time from discontinuation was ≥1 month had a significantly worse 3-month EMR, 6-month MMR and 12-month MR4.5 (P =0.028, P =0.021, P =0.002).
CONCLUSIONS
Flumatinib has better molecular response and tolerance in patients with primary, imatinib/dasatinib-intolerant or resistant CML. Medium-risk/high-risk in ELTS score and time to recovery from discontinuation due to haematological toxicity ≥1 month are important factors influencing achievement of better molecular response in flumatinib treatment.
Humans
;
Imatinib Mesylate/therapeutic use*
;
Dasatinib/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
;
Retrospective Studies
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Benzamides/therapeutic use*
;
Chronic Disease
;
Treatment Outcome
;
Antineoplastic Agents/therapeutic use*
10.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*

Result Analysis
Print
Save
E-mail