1.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.Synergistic Effect of Combination of Flumatinib with Chidamide in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia.
Chen-Yan YANG ; Chan YANG ; Zheng GE
Journal of Experimental Hematology 2025;33(4):951-960
OBJECTIVE:
To explore the synergistic effect of flumatinib (FLU) combined with histone deacetylase inhibitor chidamide (CHI) and underlying mechanism on Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) SUP-B15 cells.
METHODS:
CCK-8 method was used to examine the effects of FLU, CHI alone and combination therapy on the proliferation of SUP-B15 cells. Flow cytometry was utilized to analyze the cell cycle and apoptosis. RT-qPCR and Western blot methods were performed to detect target gene expression.
RESULTS:
FLU combined with CHI significantly inhibited the proliferation, induced G0/G1 phase arrest, and increased the apoptosis rate in SUP-B15 cells compared with FLU and CHI alone. The 50 genes were identified by overlapping the two drugs' targets of action with Ph+ ALL oncogenic genes in the public databases, and p53 and c-Myc transcription factors and PI3K/AKT signaling pathways were enriched in the overlapped genes. The combination of FLU and CHI significantly reduced the mRNA level of BCR::ABL fusion gene, up-regulated the protein and mRNA levels of p53, BAX, and Caspase-3, and down-regulated the protein and mRNA levels of c-Myc, PIK3CA, PIK3CB, and AKT2 compared with single-drug therapy. The analysis of GEO database and our center cohort showed that c-Myc, PIK3CA, PIK3CB, and AKT2 were significantly up-regulated while p53 was down-regulated in Ph+ ALL patients compared to healthy controls.
CONCLUSION
FLU combined with CHI synergistically inhibits cell proliferation, promotes apoptosis, and induces cycle arrest by targeting the PI3K/AKT signaling pathway through the p53/c-Myc axis in Ph+ ALL.
Humans
;
Aminopyridines/pharmacology*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Apoptosis/drug effects*
;
Benzamides/pharmacology*
;
Cell Proliferation/drug effects*
;
Philadelphia Chromosome
;
Drug Synergism
;
Cell Line, Tumor
;
Signal Transduction
;
Pyridines/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
4.The Effects of Chidamide Combined with Anti-myeloma Drugs on the Proliferation and Apoptosis of Myeloma Cells.
Yong LIU ; Yun XU ; Yan XIE ; Guang-Hua CHEN ; Wei LIU ; Wei-Qin YAO ; Shuang YAN ; Ling-Zhi YAN ; De-Pei WU ; Cheng-Cheng FU
Journal of Experimental Hematology 2021;29(4):1187-1194
OBJECTIVE:
To investigate the effects of chidamide combined with anti-myeloma drugs on the proliferation and apoptosis of myeloma cells.
METHODS:
The proliferation inhibition of the cells was detected by CCK-8 method, and flow cytometry was used to detected the apoptosis of the cells.
RESULTS:
Chidamide could inhibit the proliferation of myeloma cells and promote the apoptosis of primary myeloma plasma cells in a time- and dose-dependent manner (P<0.05). In NCI-H929 cell line, chidamide combined with low-dose bortezomib and lenalidomide showed synergistic effect, while combined with dexamethasone and pomalidomide showed additive effect. In MM.1s cell line, chidamide combined with bortezomib, dexamethasone, lenalidomide and pomalidomide all showed synergistic effects.
CONCLUSION
Chidamide inhibits proliferation of myeloma cells in a time- and dose-dependent manner and promotes apoptosis of primary myeloma plasma cells. Furthermore, it can enhance the inhibitory effect of anti-myeloma drugs.
Aminopyridines
;
Apoptosis
;
Benzamides
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Multiple Myeloma
;
Pharmaceutical Preparations
5.Effect of danusertib on cell cycle, apoptosis and autophagy of hepatocellular carcinoma HepG2 cells .
Qiaohua ZHU ; Meihua LUO ; Chengyu ZHOU ; Zhixian CHEN ; Wei HUANG ; Jiangyuan HUANG ; Shufeng ZHAO ; Xinfa YU
Journal of Southern Medical University 2018;38(12):1476-1484
OBJECTIVE:
To investigate the effect of danusertib (Danu), an inhibitor of Aurora kinase, on the proliferation, cell cycle, apoptosis, and autophagy of hepatocellular carcinoma HepG2 cells and explore the underlying mechanisms.
METHODS:
MTT assay was used to examine the effect of Danu on the viability of HepG2 cells to determine the IC50 of Danu. The effect of Danu on cell cycle distribution, apoptosis and autophagy were determined using flow cytometry. Western blotting was used to detect the expressions of the proteins related to cell cycle, apoptosis and autophagy. Chloroquine was used to suppress Danuinduced autophagy to test the apoptosis-inducing effect of Danu.
RESULTS:
Danu significantly inhibited the proliferation of HepG2 cells with IC of 39.4 μmol and 14.4 μmol at 24 h and 48 h, respectively. Danu caused cell cycle arrest in G/M phase in HepG2 cells and led to polyploidy accumulation via up-regulating the expressions of p53 and p21 and down-regulating the expressions of cyclin B1 and DC2. Danu also caused apoptosis of HepG2 cells through up-regulating the expressions of Bax, Puma, cleaved caspase-3, cleaved caspase-9, cleaved PARP and cytochrome C and down-regulating the expressions of Bcl-xl and Bcl-2. Danu induced autophagy via activating AMPK signaling and inhibiting PI3K/PTEN/AKT/mTOR axis, and inhibition of Danu-induced autophagy with chloroquine enhanced the pro-apoptotic effect of Danu.
CONCLUSIONS
Danu inhibits cell proliferation and induces cell cycle arrest in G/M phase, apoptosis and cytoprotective autophagy in HepG2 cells.
Apoptosis
;
drug effects
;
Autophagy
;
drug effects
;
Benzamides
;
pharmacology
;
Carcinoma, Hepatocellular
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Division
;
drug effects
;
Cell Proliferation
;
drug effects
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
pathology
;
Neoplasm Proteins
;
metabolism
;
Protein Kinase Inhibitors
;
pharmacology
;
Pyrazoles
;
pharmacology
6.Mitochondrial aldehyde dehydrogenase 2 protects against high glucose-induced injury in neonatal rat cardiomyocytes by regulating CaN-NFAT3 signaling pathway.
Jianlu GUO ; Pinfang KANG ; Lei ZHU ; Shuo SUN ; Min TAO ; Heng ZHANG ; Bi TANG
Journal of Southern Medical University 2018;38(11):1288-1293
OBJECTIVE:
To investigate whether CaN-NFAT3 pathway mediates the protective effects of aldehyde dehydrogenase (ALDH) 2 in high glucose-treated neonatal rat ventricular myocytes.
METHODS:
The ventricular myocytes were isolated from the heart of neonatal (within 3 days) SD rats by enzyme digestion and cultured in the presence of 5-Brdu. After reaching confluence, the cultured ventricular myocytes were identified using immunofluorescence assay for -SA protein. The cells were then cultured in either normal (5 mmol/L) or high glucose (30 mmol/L) medium in the presence of ALDH2 agonist Alda-1, ALDH 2 inhibitor Daidzin, or Alda-1 and NFAT3 inhibitor (11R-VIVIT). Fluorescent probe and ELISA were used to detect intracellular Ca concentration and CaN content, respectively; ALDH2, CaN and NFAT3 protein expressions in the cells were detected using Western blotting.
RESULTS:
Compared with cells cultured in normal glucose, the cells exposed to high glucose showed a significantly decreased expression of ALDH2 protein ( < 0.05) and increased expressions of CaN ( < 0.05) and NFAT3 proteins with also increased intracellular CaN and Ca concentrations ( < 0.01). Alda-1 treatment significantly lowered Ca concentration ( < 0.05), intracellular CaN content ( < 0.01), and CaN and NFAT3 protein expressions ( < 0.05), and increased ALDH2 protein expression ( < 0.05) in high glucose- exposed cells; Daidzin treatment significantly increased Ca concentration ( < 0.01) and intracellular CaN content ( < 0.05) in the exposed cells. Compared with Alda-1 alone, treatment of the high glucose-exposed cells with both Alda-1 and 11R-VIVIT did not produce significant changes in the expression of ALDH2 protein (>0.05) but significantly reduced the expression of NFAT3 protein ( < 0.05).
CONCLUSIONS
Mitochondrial ALDH2 protects neonatal rat cardiomyocytes against high glucose-induced injury possibly by negatively regulating Ca-CaN-NFAT3 signaling pathway.
Aldehyde Dehydrogenase, Mitochondrial
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Animals, Newborn
;
Benzamides
;
pharmacology
;
Benzodioxoles
;
pharmacology
;
Calcium
;
metabolism
;
Cells, Cultured
;
Culture Media
;
Enzyme Inhibitors
;
pharmacology
;
Glucose
;
administration & dosage
;
pharmacology
;
Isoflavones
;
pharmacology
;
Mitochondria, Heart
;
enzymology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
NFATC Transcription Factors
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
7.Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome.
Su-Bei ZHANG ; Xin SUN ; Qi WU ; Jun-Ping WU ; Huai-Yong CHEN
Chinese Medical Journal 2016;129(17):2040-2044
BACKGROUNDBronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS.
METHODSSuspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance.
RESULTSLPCs were isolated with the surface phenotype of CD31-CD34-CD45- EpCAM+Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05).
CONCLUSIONThe epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS.
Animals ; Benzamides ; pharmacology ; Bronchiolitis Obliterans ; metabolism ; pathology ; Cells, Cultured ; Coculture Techniques ; Dioxoles ; pharmacology ; Fibroblasts ; cytology ; drug effects ; metabolism ; physiology ; Flow Cytometry ; Humans ; Mice ; Stem Cells ; cytology ; drug effects ; metabolism
8.Effect of Shuwel Decoction on Enteric Nervous System-Interstitial Cells of Cajal-Smooth Muscle Network Structure Injury in Deep Muscle Nerve Plexus of Functional Dyspepsia Rats.
Xu-an GUO ; Yun LIU ; Xiao-juan WANG ; Yin XU ; Huai-liang TAN ; Jiao YIN
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):454-459
OBJECTIVETo observe morphological changes of enteric nervous system (ENS)-interstitial cells of Cajal (ICC)-smooth muscle cell (SMC) structure injury in deep muscle nerve plexus offunctional dyspepsia (FD) rats, and the repair of Shuwei Decoction (SD) on it, and to explore its effecton FD.
METHODSTotally 72 rats were randomly divided into the control group, the model group, the lowdose SD group, the medium dose SD group, and the high dose SD group, the Mosapride group, 12 ineach group. Rats in the low dose SD group, the medium dose SD group, and the high dose SD group were intragastrically fed with SD at 0.767, 1.534, 3.068 g/mL, respectively. Rats in the Mosapride group were intragastrically fed with Mosapride (1.37 mg/kg). FD rat model with Gan depression Pi deficiency syndrome (GDPDS) was established using complex pathogenic factors. Corresponding liquors were respectively administered to rats in corresponding groups from the 3rd day after modeling. Distilled water(10 mL/kg) was administered to rats in the control group and the model group, once per day for 14 successive days. Rats were sacrificed and small intestine tissues collected for observing ENS-ICC-SMC structure injury using immunofluorescence double labeling, laser scanning confocal microscope, and transmission electron microscope at day 15. Repair of SD on it was also observed.
RESULTSENS-ICC SMC structure was incomplete, with obvious injury in mutual link of ICC, ICC, SMC, and connecting structure. ENS-ICC-SMC structure was more complete in high, medium, and low dose SD groups, with close link of ICC and SMO. Their connecting structures were in good conditions.
CONCLUSIONSD could keep the integrity of ENS-ICC-SMC structure by promoting regeneration and morphology of ICC, thereby, improving gastrointestinal movement disorder and showing therapeutic effect on FD.
Animals ; Benzamides ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Dyspepsia ; drug therapy ; Enteric Nervous System ; drug effects ; Interstitial Cells of Cajal ; drug effects ; Morpholines ; pharmacology ; Muscle, Smooth ; drug effects ; Random Allocation ; Rats
9.Exenatide promotes chemotactic migration of adipose-derived stem cells through SDF-1/CXCR-4/Rho GTPase pathway.
Qiang MA ; Jun-Jie YANG ; Hao ZHOU ; Ying ZHANG ; Yun-Dai CHEN
Journal of Southern Medical University 2016;36(8):1034-1040
OBJECTIVETo investigate the effect of exenatide on chemotactic migration of adipose-derived stem cells (ADSCs) and confirm that Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 migration pathway.
METHODSADSCs were isolated, cultured, identified by flow cytometry, and induced to differentiate in vitro. RTCA xCELLigence system was used to analyze the effect of exenatide on ADSC proliferation. The effects of exenatide at different concentrations, AMD3100 (CXCR-4 antagonist), and CCG-1423 (Rho GTPase antagonist) on chemotactic migration of ADSCs were tested using Transwell assay. The expression of CXCR-4 in exenatide-treated ADSCs was measured by flow cytometry and Western blotting. Active Rho pull-down detection kit was used to detect the expression of Rho GTPase. Laser confocal microscopy was used to observe the formation of stress fibers in ADSCs with different treatments.
RESULTSExenatide treatment for 24 h had no significant effect on ADSC proliferation. Exenatide obviously promoted chemotactic migration of ADSCs in a concentration-dependent manner, and this effect was blocked by either AMD3100 or CCG-1423. Both flow cytometry and Western blotting showed that exenatide dose-dependently up-regulated CXCR-4 expression in ADSCs. Western blotting showed that the expression of Rho GTPase was related to SDF-1/CXCR-4 pathway, and laser confocal microscopy revealed that the formation of stress fibers in ADSCs was related to SDF-1/CXCR-4/ Rho GTPase pathway.
CONCLUSIONExenatide promotes chemotactic migration of ADSCs, and Rho GTPase is the downstream effector protein of SDF-1/CXCR-4 pathway.
Adipose Tissue ; cytology ; Anilides ; pharmacology ; Benzamides ; pharmacology ; Cells, Cultured ; Chemokine CXCL12 ; metabolism ; Chemotaxis ; Heterocyclic Compounds ; pharmacology ; Humans ; Peptides ; pharmacology ; Receptors, CXCR4 ; antagonists & inhibitors ; metabolism ; Signal Transduction ; Stem Cells ; cytology ; Venoms ; pharmacology ; rho GTP-Binding Proteins ; antagonists & inhibitors ; metabolism
10.Transforming growth factor-β1 induces bone marrow-derived mesenchymal stem cells to differentiate into cancer-associated fibroblasts.
Lei SHANGGUAN ; Email: SHANGGUANLEI@126.COM. ; Xiaojie LI ; Zhe WANG ; Zhuojing LUO
Chinese Journal of Oncology 2015;37(11):804-809
OBJECTIVETo investigate the effect of transforming growth factor-β1 (TGF-β1) on the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into cancer-associated fibroblasts(CAFs).
METHODSMSCs were cultured in α-MEM with recombinant human TGF-β1 or in tumor-conditioned medium.The expression of CAFs markers were detected by immunofluorescence and quantitative RT-PCR.
RESULTSThe qRT-PCR assay showed that the expression of CAFs markers FAP, ACTA, CAV, CCL5, CXCR4, FSP1, SDF-1 and vimentin were 9.92±2.16, 7.76±1.28, 3.04±0.95, 3.28±2.16, 2.13±0.71, 1.41±0.66, 2.25±0.86 and 1.38±0.56, respectively, significantly upregulated in the MSCs co-cultured with TGF-β1 or TCM. The relative levels of FAP, ACTA, CAV, CCL5, CXCR4, FSP1, SDF-1 and vimentin mRNA in the TCM group were 7.52±1.76, 5.02±1.18, 1.98±1.19, 1.82±1.19, 2.95±0.86, 1.44±0.67, 2.08±0.74 and 1.47±0.55, respectively, indicating that MSCs can express CAFs phenotype.TGF beta signaling pathway inhibitor SB-431542 could inhibit the differentiation. Both immunofluorescence and Western blot confirmed the above results.
CONCLUSIONSTGF-β1 induces differentiation of local MSCs to CAFs by upregulating the expression of pSmad3, so as to further promote the growth of cancer cells.
Benzamides ; pharmacology ; Bone Marrow Cells ; cytology ; Cell Differentiation ; drug effects ; Cell Line, Tumor ; Chemokine CXCL12 ; metabolism ; Coculture Techniques ; Culture Media, Conditioned ; Dioxoles ; pharmacology ; Fibroblasts ; cytology ; Humans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Organic Chemicals ; Receptors, CXCR4 ; metabolism ; Recombinant Proteins ; pharmacology ; Smad3 Protein ; metabolism ; Transforming Growth Factor beta1 ; antagonists & inhibitors ; pharmacology ; Vimentin ; metabolism

Result Analysis
Print
Save
E-mail