1.Fisher discriminant analysis of multimodal ultrasound in diagnosis of cervical metastatic lymph nodes in papillary thyroid cancer
Yixuan WANG ; Yue HAN ; Fei LI ; Yuyang LIN ; Bei WANG
The Korean Journal of Internal Medicine 2025;40(1):103-114
Background/Aims:
The purpose of this study was to develop a diagnostic model utilizing multimodal ultrasound parameters to aid in the detection of cervical lymph node metastasis in papillary thyroid cancer (PTC) patients.
Methods:
The study included 84 suspicious lymph nodes from 69 PTC patients, all of whom underwent fine needle aspiration with pathological results. Data from conventional grayscale ultrasound, shear wave elastography (SWE), and superb microvascular imaging were analyzed. Key ultrasound features were compared between benign and metastatic groups to create a diagnostic model using Fisher’s stepwise discriminant analysis. The model’s effectiveness was assessed with self-testing, cross-validation, and receiver operating characteristic curve analysis.
Results:
Four features, namely lymphatic hilum (X1), cortical hyperechogenicity (X2), vascular pattern (X4), and SWEmean (X7), were integral to the discriminant analysis, resulting in the equation: Y1 = -3.461 + 2.423X1 + 0.321X2 + 1.620X4 + 0.109X7, Y2 = -8.053 + 0.414X1 + 2.600X2 + 2.504X4 + 0.192X7. If Y1 < Y2, the LN would be diagnosed as metastatic lymph nodes. The model demonstrated an area under the curve of 0.833, with a sensitivity of 83.33% and specificity of 83.33%.
Conclusions
The multimodal ultrasound diagnostic model, established through Fisher’s stepwise discriminant analysis, proved effective in identifying metastatic lymph nodes in PTC patients.
2.Fisher discriminant analysis of multimodal ultrasound in diagnosis of cervical metastatic lymph nodes in papillary thyroid cancer
Yixuan WANG ; Yue HAN ; Fei LI ; Yuyang LIN ; Bei WANG
The Korean Journal of Internal Medicine 2025;40(1):103-114
Background/Aims:
The purpose of this study was to develop a diagnostic model utilizing multimodal ultrasound parameters to aid in the detection of cervical lymph node metastasis in papillary thyroid cancer (PTC) patients.
Methods:
The study included 84 suspicious lymph nodes from 69 PTC patients, all of whom underwent fine needle aspiration with pathological results. Data from conventional grayscale ultrasound, shear wave elastography (SWE), and superb microvascular imaging were analyzed. Key ultrasound features were compared between benign and metastatic groups to create a diagnostic model using Fisher’s stepwise discriminant analysis. The model’s effectiveness was assessed with self-testing, cross-validation, and receiver operating characteristic curve analysis.
Results:
Four features, namely lymphatic hilum (X1), cortical hyperechogenicity (X2), vascular pattern (X4), and SWEmean (X7), were integral to the discriminant analysis, resulting in the equation: Y1 = -3.461 + 2.423X1 + 0.321X2 + 1.620X4 + 0.109X7, Y2 = -8.053 + 0.414X1 + 2.600X2 + 2.504X4 + 0.192X7. If Y1 < Y2, the LN would be diagnosed as metastatic lymph nodes. The model demonstrated an area under the curve of 0.833, with a sensitivity of 83.33% and specificity of 83.33%.
Conclusions
The multimodal ultrasound diagnostic model, established through Fisher’s stepwise discriminant analysis, proved effective in identifying metastatic lymph nodes in PTC patients.
3.Fisher discriminant analysis of multimodal ultrasound in diagnosis of cervical metastatic lymph nodes in papillary thyroid cancer
Yixuan WANG ; Yue HAN ; Fei LI ; Yuyang LIN ; Bei WANG
The Korean Journal of Internal Medicine 2025;40(1):103-114
Background/Aims:
The purpose of this study was to develop a diagnostic model utilizing multimodal ultrasound parameters to aid in the detection of cervical lymph node metastasis in papillary thyroid cancer (PTC) patients.
Methods:
The study included 84 suspicious lymph nodes from 69 PTC patients, all of whom underwent fine needle aspiration with pathological results. Data from conventional grayscale ultrasound, shear wave elastography (SWE), and superb microvascular imaging were analyzed. Key ultrasound features were compared between benign and metastatic groups to create a diagnostic model using Fisher’s stepwise discriminant analysis. The model’s effectiveness was assessed with self-testing, cross-validation, and receiver operating characteristic curve analysis.
Results:
Four features, namely lymphatic hilum (X1), cortical hyperechogenicity (X2), vascular pattern (X4), and SWEmean (X7), were integral to the discriminant analysis, resulting in the equation: Y1 = -3.461 + 2.423X1 + 0.321X2 + 1.620X4 + 0.109X7, Y2 = -8.053 + 0.414X1 + 2.600X2 + 2.504X4 + 0.192X7. If Y1 < Y2, the LN would be diagnosed as metastatic lymph nodes. The model demonstrated an area under the curve of 0.833, with a sensitivity of 83.33% and specificity of 83.33%.
Conclusions
The multimodal ultrasound diagnostic model, established through Fisher’s stepwise discriminant analysis, proved effective in identifying metastatic lymph nodes in PTC patients.
4.Fisher discriminant analysis of multimodal ultrasound in diagnosis of cervical metastatic lymph nodes in papillary thyroid cancer
Yixuan WANG ; Yue HAN ; Fei LI ; Yuyang LIN ; Bei WANG
The Korean Journal of Internal Medicine 2025;40(1):103-114
Background/Aims:
The purpose of this study was to develop a diagnostic model utilizing multimodal ultrasound parameters to aid in the detection of cervical lymph node metastasis in papillary thyroid cancer (PTC) patients.
Methods:
The study included 84 suspicious lymph nodes from 69 PTC patients, all of whom underwent fine needle aspiration with pathological results. Data from conventional grayscale ultrasound, shear wave elastography (SWE), and superb microvascular imaging were analyzed. Key ultrasound features were compared between benign and metastatic groups to create a diagnostic model using Fisher’s stepwise discriminant analysis. The model’s effectiveness was assessed with self-testing, cross-validation, and receiver operating characteristic curve analysis.
Results:
Four features, namely lymphatic hilum (X1), cortical hyperechogenicity (X2), vascular pattern (X4), and SWEmean (X7), were integral to the discriminant analysis, resulting in the equation: Y1 = -3.461 + 2.423X1 + 0.321X2 + 1.620X4 + 0.109X7, Y2 = -8.053 + 0.414X1 + 2.600X2 + 2.504X4 + 0.192X7. If Y1 < Y2, the LN would be diagnosed as metastatic lymph nodes. The model demonstrated an area under the curve of 0.833, with a sensitivity of 83.33% and specificity of 83.33%.
Conclusions
The multimodal ultrasound diagnostic model, established through Fisher’s stepwise discriminant analysis, proved effective in identifying metastatic lymph nodes in PTC patients.
5.Fisher discriminant analysis of multimodal ultrasound in diagnosis of cervical metastatic lymph nodes in papillary thyroid cancer
Yixuan WANG ; Yue HAN ; Fei LI ; Yuyang LIN ; Bei WANG
The Korean Journal of Internal Medicine 2025;40(1):103-114
Background/Aims:
The purpose of this study was to develop a diagnostic model utilizing multimodal ultrasound parameters to aid in the detection of cervical lymph node metastasis in papillary thyroid cancer (PTC) patients.
Methods:
The study included 84 suspicious lymph nodes from 69 PTC patients, all of whom underwent fine needle aspiration with pathological results. Data from conventional grayscale ultrasound, shear wave elastography (SWE), and superb microvascular imaging were analyzed. Key ultrasound features were compared between benign and metastatic groups to create a diagnostic model using Fisher’s stepwise discriminant analysis. The model’s effectiveness was assessed with self-testing, cross-validation, and receiver operating characteristic curve analysis.
Results:
Four features, namely lymphatic hilum (X1), cortical hyperechogenicity (X2), vascular pattern (X4), and SWEmean (X7), were integral to the discriminant analysis, resulting in the equation: Y1 = -3.461 + 2.423X1 + 0.321X2 + 1.620X4 + 0.109X7, Y2 = -8.053 + 0.414X1 + 2.600X2 + 2.504X4 + 0.192X7. If Y1 < Y2, the LN would be diagnosed as metastatic lymph nodes. The model demonstrated an area under the curve of 0.833, with a sensitivity of 83.33% and specificity of 83.33%.
Conclusions
The multimodal ultrasound diagnostic model, established through Fisher’s stepwise discriminant analysis, proved effective in identifying metastatic lymph nodes in PTC patients.
6.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
7.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
8.Discovery of a novel AhR-CYP1A1 axis activator for mitigating inflammatory diseases using an in situ functional imaging assay.
Feng ZHANG ; Bei ZHAO ; Yufan FAN ; Lanhui QIN ; Jinhui SHI ; Lin CHEN ; Leizhi XU ; Xudong JIN ; Mengru SUN ; Hongping DENG ; Hairong ZENG ; Zhangping XIAO ; Xin YANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(1):508-525
The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating many physiological processes. Activating the AhR-CYP1A1 axis has emerged as a novel therapeutic strategy against various inflammatory diseases. Here, a practical in situ cell-based fluorometric assay was constructed to screen AhR-CYP1A1 axis modulators, via functional sensing of CYP1A1 activities in live cells. Firstly, a cell-permeable, isoform-specific enzyme-activable fluorogenic substrate for CYP1A1 was rationally constructed for in-situ visualizing the dynamic changes of CYP1A1 function in living systems, which was subsequently used for discovering the efficacious modulators of the AhR-CYP1A1 axis. Following screening of a compound library, LAC-7 was identified as an efficacious activator of the AhR-CYP1A1 axis, which dose-dependently up-regulated the expression levels of both CYP1A1 and AhR in multiple cell lines. LAC-7 also suppressed macrophage M1 polarization and reduced the levels of inflammatory factors in LPS-induced bone marrow-derived macrophages. Animal tests showed that LAC-7 could significantly mitigate DSS-induced ulcerative colitis and LPS-induced acute lung injury in mice, and markedly reduced the levels of multiple inflammatory factors. Collectively, an optimized fluorometric cell-based assay was devised for in situ functional imaging of CYP1A1 activities in living systems, which strongly facilitated the discovery of efficacious modulators of the AhR-CYP1A1 axis as novel anti-inflammatory agents.
9.Research on the impact of supply side policy coordination of medical insurance on cost control under DIP payment method
Kun-He LIN ; Ye-Sheng SHANGGUAN ; Ya-Qi RAO ; Jing PENG ; Yi CHEN ; Yi-Fan YAO ; Ying-Bei XIONG ; Li XIANG
Chinese Journal of Health Policy 2024;17(5):17-24
Objective:This study aims to explore the synergistic effects of DIP and other medical insurance supply-side policies.Method:City A that has piloted DIP reform was set as the treatment group,and City B without reform was set as the control group.A total of 1 120 public medical institution samples from 2019 to 2022 were collected.The total medical expenses during hospitalization and some structural expenses were analyzed using DID method.Result:DIP had a significant inhibitory effect on the medical expenses,and the expenses of checkups and examinations during hospitalization in city A,but had no impact on the drug and the material expenses during hospitalization.Conclusion:DIP played a significant cost control role and effectively controlled the total medical expenses during hospitalization.The synergistic effects of price adjustment of medical services policy and national centralized drug/material procurement policy on cost control were insufficient.DIP synergized with other supply-side policies to promote rational medical cost structure.It is suggested that medical insurance departments should focus on the synergistic effects of medical insurance supply-side policies to jointly improve the efficiency of medical insurance fund utilization.
10.Analysis of medical reimbursement rate and influencing factors under the DIP payment method
Meng-Yuan ZHAO ; Kun-He LIN ; Ying-Bei XIONG ; Yi-Fan YAO ; Zhi-He CHEN ; Yu-Meng ZHANG ; Li XIANG
Chinese Journal of Health Policy 2024;17(6):40-46
Objective:Analyze the medical reimbursement rate and influencing factors under the DIP payment method to refine the DIP payment policy,promote the optimization of internal operations in medical institutions,and ensure reasonable compensation.Methods:Based on the 2022 DIP fund settlement data from 196 medical institutions in City A,the study used multiple linear regression to analyze the factors affecting medical reimbursement rate and conducted a heterogeneity analysis for medical institutions of different levels.Results:The medical reimbursement rate for medical institutions in City A in 2022 was 103.32%.Medical institutions with lower CMI standardized inpatient costs,lower rates of deviation cases,tertiary care institutions,lower proportion of level-four surgeries,and lower ratios of resident to employee medical insurance cases have higher medical reimbursement rate(P<0.05).Heterogeneity analysis reveals that therates of deviation cases,the proportion of primary care diseases,the ratio of resident to employee medical insurance cases,and the low-standard admission rate have different impacts on medical institutions of different levels.Conclusion:Medical insurance departments should improve policies for primary care diseases,dynamically adjust disease catalogs and payment standards,optimize funding levels and institutional coefficients,and increase penalties for violations to ensure effective use of funds.Medical institutions need to strengthen their understanding of policies,focus on refined internal management,promote standardized and rational diagnosis and treatment through performance assessment transformation,and leverage their own advantages in medical services to reasonably increase the medical reimbursement rate.

Result Analysis
Print
Save
E-mail