1.Transposable elements in health and disease: Molecular basis and clinical implications.
Chinese Medical Journal 2025;138(18):2220-2233
Transposable elements (TEs), once considered genomic "junk", are now recognized as critical regulators of genome function and human disease. These mobile genetic elements-including retrotransposons (long interspersed nuclear elements [LINE-1], Alu, short interspersed nuclear element-variable numbers of tandem repeats-Alu [SVA], and human endogenous retrovirus [HERV]) and DNA transposons-are tightly regulated by multilayered mechanisms that operate from transcription through to genomic integration. Although typically silenced in somatic cells, TEs are transiently activated during key developmental stages-such as zygotic genome activation and cell fate determination-where they influence chromatin architecture, transcriptional networks, RNA processing, and innate immune responses. Dysregulation of TEs, however, can lead to genomic instability, chronic inflammation, and various pathologies, including cancer, neurodegeneration, and aging. Paradoxically, their reactivation also presents new opportunities for clinical applications, particularly as diagnostic biomarkers and therapeutic targets. Understanding the dual role of TEs-and balancing their contributions to normal development and disease-is essential for advancing novel therapies and precision medicine.
Humans
;
DNA Transposable Elements/physiology*
;
Animals
;
Long Interspersed Nucleotide Elements/genetics*
;
Neoplasms/genetics*
;
Genomic Instability/genetics*
;
Endogenous Retroviruses/genetics*
2.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
3.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
4.Research progress in the developmental process of non-viral CAR-T technology.
Haipeng LI ; Qiyu ZHU ; Jialiang ZHU ; Jingting MIN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):461-467
Chimeric antigen receptor T (CAR-T) lymphocytes are at the forefront of adoptive immunotherapy research, and this technology has significantly advanced the prospects of tumor immunotherapy. CAR-T therapy has demonstrated remarkable efficacy in haematological tumours of lymphoid origin and provided therapeutic possibility for solid tumours. Currently, CAR-T cell preparation predominantly involves transfection of T cells with viral vectors. However, the production of viral vectors is time-consuming, expensive, and the vectors have low loading capacity, along with insertion instability. Consequently, there is a pressing need to develop more convenient and precise non-viral gene delivery methods. This paper reviews the most promising non-viral gene delivery technologies, including CRISPR/Cas9 gene editing, transposon systems such as Sleeping Beauty (SB) and PiggyBac (PB), and mRNA, and anticipates the future development of non-viral vector-based CAR-T therapies.
Humans
;
Immunotherapy, Adoptive/methods*
;
Receptors, Chimeric Antigen/immunology*
;
Animals
;
Gene Transfer Techniques
;
Genetic Vectors/genetics*
;
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
DNA Transposable Elements/genetics*
;
T-Lymphocytes/immunology*
;
Neoplasms/immunology*
5.Identification of the Novel Allele HLA-B*54:01:11 Detected by NGS Using the Third Generation Sequencing Technology.
Nan-Ying CHEN ; Yi-Zheng HE ; Wen-Wen PI ; Qi LI ; Li-Na DONG ; Wei ZHANG
Journal of Experimental Hematology 2025;33(2):565-568
OBJECTIVE:
To distinguish the ambiguous genotyping results of human leukocyte antigen (HLA), identify a novel HLA-B allele and analyze the nucleotide sequence.
METHODS:
A total of 2 076 umbilical core blood samples from the Zhejiang Cord Blood Bank in 2022 were detected using the next generation sequencing technology (NGS) based on the Ion Torrent S5 platform. Among these a rare HLA-B allele with ambiguous combination result containing a base mutation was identified, and was further confimed by the third-generation sequencing (TGS) based on the nanopore technology.
RESULTS:
The NGS typing result of HLA-B locus showed HLA-B* 46:18, 54:06 or HLA-B*46:01, 54:XX (including a base mutation), and nanopore sequencing confirmed the typing as HLA-B*46:01, 54:XX (including a base mutation). Compared with HLA-B*54:01:01:01, the HLA-B*54:XX allele showed one single nucleotide substitution at position 1014 T>C in exon 6, with no amino acid change. The nucleotide sequence of the novel HLA-B*54:XX has been submitted to the GenBank nucleotide sequence database and the accession number OP853532 was assigned.
CONCLUSION
A ambiguous genotyping of the HLA-B Locus detected by NGS was distinguished by nanopore sequencing and a new HLA-B allele was successfully identified, which was officially named as HLA-B*54:01:11 by the World Health Organization Nomenclature Committee for Factors of the HLA System.
Humans
;
High-Throughput Nucleotide Sequencing
;
Alleles
;
HLA-B Antigens/genetics*
;
Genotype
;
Mutation
;
Sequence Analysis, DNA
;
Base Sequence
6.The Relationship between Ig Class Switch Recombination and MMR Protein, Microsatellite Phenotype in Extranodal Marginal Zone Lymphoma of Mucosa-associated Lymphoid Tissue.
Hong-Xia WANG ; Jun CHEN ; Jing LI ; Guo-Feng LU ; Xiu-Hua HAN ; Rong YANG ; Ya-Jun JIANG
Journal of Experimental Hematology 2025;33(4):1036-1041
OBJECTIVE:
To investigate the relationship between Ig class switch recombination (CSR) and mismatch repair (MMR) protein, microsatellite phenotype in extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma).
METHODS:
Forty cases of MALT lymphoma archived in the Department of Pathology, Jiading District Central Hospital, Shanghai University of Medicine & Health Sciences were selected as the observation group, and twenty cases of benign lymphoid tissue hyperplasia were as the control group. The expressions of IgG, IgM, IgD, and IgA in both groups were detected by immunohistochemical double staining, and MMR proteins including MLH1, MSH2, MSH6, and PMS2 in both groups were detected by immunohistochemistry. Multiplex fluorescence PCR capillary electrophoresis was used to detect microsatellite phenotype in tumor and adjacent tissues of the experimental group.
RESULTS:
In the observation group, the proportions of single Ig heavy chain expression (modeⅠ), negative expression (modeⅡ), and multiple expression (mode Ⅲ) were 65% (26/40), 27.5% (11/40), and 7.5% (3/40), respectively, while in the control group were 0 (0/20), 5% (1/20), and 95% (19/20). The proportion of Ig heavy chain expression mode Ⅰ+Ⅱ in the observation group was 92.5%, which was significantly higher than 5% in the control group (P < 0.01). In the observation group, partial deletion of MMR protein was observed in 3 cases (7.5%), including 2 cases of MSH6 deletion and 1 case of both MSH6 and PMS2 deletion. In the control group, there was 1 case (5%) with PMS2 deletion. There was no significant difference in the deletion rate of MMR protein between the two groups ( P >0.05). A total of 5 cases of microsatellite instability (MSI) were detected in the observation group, including 1 case of low-frequency MSI (MSI-L), 4 cases of high-frequency MSI (MSI-H), and 2 cases of MSI-H with MSH6 deletion. When the loss expression of MSI-H or MMR protein was counted as a positive result, the MSI-H rate detected by PCR capillary electrophoresis was 10% (4/40), which was slightly higher than the MMR protein deletion rate detected by immunohistochemistry (7.5%, 3/40), but there was no statistically significant difference between the two groups (P >0.05). The MMR protein deletion rates among the Ig heavy chain protein expression mode Ⅰ, mode Ⅱ, and mode Ⅲ groups were 0 (0/26), 18.2% (2/11), and 33.3% (1/3), respectively. There was a statistically significant difference in the constituent ratios among the three groups (P < 0.05). The MMR protein deletion rates among the MSS, MSI-L, and MSI-H groups were 2.9% (1/35), 0 (0/1), and 50% (2/4), respectively. There was a statistically significant difference in the constituent ratios among the three groups (P < 0.05). MMR protein deficiency was positively correlated with Ig heavy chain expression pattern and MSI ( r =0.41, P < 0.05; r =0.48, P < 0.05), but Ig heavy chain expression pattern was not correlated with MSI ( r =0.02, P >0.05).
CONCLUSION
Ig heavy chain CSR detection is helpful for the differential diagnosis of MALT lymphoma. Low frequency MMR protein deletion and MSI-H phenotype exist in MALT lymphoma, which may be of certain value for the study of its occurrence, development and clinical treatment.
Humans
;
Lymphoma, B-Cell, Marginal Zone/genetics*
;
DNA Mismatch Repair
;
Immunoglobulin Class Switching
;
DNA-Binding Proteins/metabolism*
;
MutS Homolog 2 Protein
;
Microsatellite Repeats
;
Phenotype
;
MutL Protein Homolog 1
;
Mismatch Repair Endonuclease PMS2
;
Male
7.Genetic diversity and molecular identity of Prunus mume with both ornamental and edible values based on fluorescence-labeled simple sequence repeat (SSR) markers.
Zixu WANG ; Dan ZHOU ; Yanbei ZHAO ; Yuhang TONG ; Weijun ZHENG ; Qingwei LI
Chinese Journal of Biotechnology 2025;41(2):639-656
We studied the genetic diversity and established the DNA molecular identify for Prunus mume with both ornamental and edible values, aiming to collect, identify, evaluate, and breed new varities of this plant and promote the upgrading of the P. mume industry chain in northern China. We employed 13 pairs of primers with good polymorphism, clear bands, and good repeatability to analyze the genetic diversity and establish the molecular identify of 68 germplasm accessions of P. mume with both ornamental and edible values from Xingtai, Hebei Province. We then employed the unweighted pair-group method with arithmetic means (UPGMA) to perform the cluster analysis based on genetic distance. After that, we analyzed the genetic structure of the 68 germplasm accessions based on a Bayesian model. The 13 pairs of SSR primers amplified a total of 124 alleles from 68 P. mume germplasm accessions, with the mean number of alleles (Na) of 9.538 5, the minor allele frequency (MAF) of 0.369 3, the mean number of effective alleles (Ne) of 4.483 5, and the mean Shannon genetic diversity index (I) of 1.712 4. The mean Nei's gene diversity index (H) of 0.763 7, the mean observed heterozygosity (Ho) of 0.719 5, the mean expected heterozygosity (He) of 0.769 3, the mean polymorphism information content (PIC) of 0.733 6, and the mean genetic similarity (GS) of 0.772 9 suggested that there were significant genetic differences and rich genetic diversity among the studied P. mume germplasm accessions. The cluster analysis revealed that the 68 accessions were classified into three groups, with the mean genetic distance of 0.622 6. The population structure analysis classified the germplasm accessions into two populations. According to the PIC of primers, we selected primers for combination and constructed the combination with the fewest primers required for germplasm differentiation of P. mume with both ornamental and edible values. This study provides a theoretical basis for the innovation and industrial upgrading of P. mume with both ornamental and edible values in gardening and the improvement of breeding efficiency.
Prunus/classification*
;
Microsatellite Repeats/genetics*
;
Genetic Variation
;
China
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Alleles
8.Development of DNA molecular identity cards for germplasm of Murraya paniculata based on SSR markers.
Cheng SUN ; Bo-Cheng WANG ; Zi-Yuan CHEN ; Chao JIANG ; Wen-Bo XIE ; Yuan YUAN
China Journal of Chinese Materia Medica 2024;49(23):6272-6280
To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M. paniculata based on 9 SSR markers identified from the M. paniculata genome, and the molecular weights and alleles of the amplified bands were analyzed. According to the banding patterns of the 9 SSR primers, this study analyzed the genetic diversity of each germplasm accession of M. paniculata and developed molecular ID cards for the test samples. The results showed that 9 pairs of SSR primers detected 78 alleles, with an average of 8.67 alleles. The observed and expected heterozygosity was 0.338-0.831(average of 0.601) and 0.413-0.853(average of 0.721), respectively. The Shannon's information index varied within the range of 0.880-1.994, with an average of 1.41. The polymorphic information content was within the range of 0.391-0.835, with an average of 0.696, which indicated rich genetic diversity. When the genetic identity was 0.347, the 65 germplasm accessions were classified into 5 groups. Based on the results, this study employed the 5 SSR primers with higher polymorphisms to develop the molecular ID cards for the germplasm resources of M. paniculata and created QR code ID cards for the 49 core germplasm accessions preserved in the Yunfu germplasm nursery, laying a foundation for the new variety breeding, production, utilization, and traceability of M. paniculata.
Microsatellite Repeats
;
DNA, Plant/genetics*
;
Murraya/classification*
;
Genetic Variation
;
Alleles
;
Polymerase Chain Reaction
;
Polymorphism, Genetic
9.Construction of a stable 4T1 cell line expressing UL19 by the PiggyBac transposon system.
Xiaotong ZHAO ; Xinya WANG ; Binlei LIU ; Han HU ; Yang WANG
Chinese Journal of Biotechnology 2024;40(11):4138-4148
To investigate the mechanism of the major capsid protein VP5 (encoded by the UL19 gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of UL19 in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of UL19 and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with UL19, demonstrating the stable insertion of UL19 into the 4T1 cell genome. The real-time cell analysis (RTCA) was employed to monitor the proliferation of 4T1-iRFP-VP5-GFP cells, which showed similar proliferation activity to their parental 4T1 cells. Further studies confirmed that NK92 cells exhibited stronger cytotoxicity against 4T1-iRFP-VP5-GFP cells than against 4T1 cells. This study layed a foundation for elucidating the role of VP5 protein in regulating immune cells, including T cells and NK cells, via HLA-E in 4T1 cells to exert the anti-tumor function.
Animals
;
Mice
;
DNA Transposable Elements/genetics*
;
Cell Line, Tumor
;
Capsid Proteins/biosynthesis*
;
Transfection
;
Green Fluorescent Proteins/metabolism*
;
Oncolytic Viruses/genetics*
;
Female
;
Simplexvirus/genetics*
10.Screening and identification of key miRNAs in post-transcriptional regulation of CART in the bovine hypothalamus.
Junli CHENG ; Junrong YAN ; Shuning HOU ; Zhiwei ZHU ; Pengfei LI
Chinese Journal of Biotechnology 2024;40(12):4557-4572
This study aimed to explore the roles of microRNAs (miRNAs) in the post-transcriptional regulation of cocaine- and amphetamine-regulated transcript (CART) peptide in the bovine hypothalamus and to screen key regulatory miRNAs. Targetscan was used to predict the potential miRNAs binding to CART 3' untranslated regions (3'UTR). Bioinformatics analysis predicted 7 miRNA binding sites in the bovine CART 3'UTR, which were bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, bta-miR-758, bta-miR-877, and bta-miR-381, respectively. Reverse transcription-PCR (RT-PCR) was carried out to determine the endogenous expression of CART and target miRNAs in the bovine hypothalamus. All the 7 target miRNAs and CART were endogenously expressed in the bovine hypothalamus. The dual-luciferase reporter gene assay was employed to detect the targeted binding relationship between CART 3'UTR and target miRNAs obtained from bioinformatics analysis. The dual-luciferase reporter gene assay confirmed that the 3'UTR of CART had a targeted binding relationship with the 7 target miRNAs. Cell experiments were conducted to examine the effects of target miRNAs on the messenger RNA (mRNA) and protein levels of exogenous CART and screen for key regulatory miRNAs. The results of cell experiments showed that the 7 miRNAs downregulated the mRNA level of CART, with bta-miR-491 demonstrating the strongest downregulating effect. Bta-miR-377, bta-miR-331-3p, bta-miR-491, bta-miR-493, and bta-miR-381 downregulated the protein level of CART, with bta-miR-381 exerting the strongest downregulating effect. Animal experiments were conducted to explore the effects of key regulatory miRNAs on the mRNA and protein levels of CART in the hypothalamus and the CART concentration in the serum. The results from animal experiments showed that miR-491 and miR-381 regulated the endogenous expression of CART in the hypothalamus and the concentration in the serum by binding to the CART 3'UTR. These results suggest that miR-491 and miR-381 are the main miRNAs regulating CART expression in the bovine hypothalamus, which can affect serum CART concentration by modulating endogenous CART expression.
Animals
;
MicroRNAs/metabolism*
;
Cattle
;
Hypothalamus/metabolism*
;
3' Untranslated Regions/genetics*
;
Nerve Tissue Proteins/metabolism*
;
Gene Expression Regulation
;
Binding Sites
;
Base Sequence
;
Computational Biology/methods*
;
Cocaine- and Amphetamine-Regulated Transcript Protein

Result Analysis
Print
Save
E-mail