1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Early Identification and Visualization of Tomato Early Blight Using Hyperspectral Imagery
Hao BAO ; Li HUANG ; Yan ZHANG ; Hao PANG
Progress in Biochemistry and Biophysics 2025;52(2):513-524
ObjectiveTomatoes are one of the highest-yielding and most widely cultivated economic crops globally, playing a crucial role in agricultural production and providing significant economic benefits to farmers and related industries. However, early blight in tomatoes is known for its rapid infection, widespread transmission, and severe destructiveness, which significantly impacts both the yield and quality of tomatoes, leading to substantial economic losses for farmers. Therefore, accurately identifying early symptoms of tomato early blight is essential for the scientific prevention and control of this disease. Additionally, visualizing affected areas can provide precise guidance for farmers, effectively reducing economic losses. This study combines hyperspectral imaging technology with machine learning algorithms to develop a model for the early identification of symptoms of tomato early blight, facilitating early detection of the disease and visual localization of affected areas. MethodsTo address noise interference present in hyperspectral images, robust principal component analysis (RPCA) is employed for effective denoising, enhancing the accuracy of subsequent analyses. To avoid insufficient information representation caused by the subjective selection of regions of interest, the Otsu’s thresholding method is utilized to extract tomato leaves effectively from the background, with the average spectrum of the entire leaf taken as the primary object of study. Furthermore, a comprehensive spectral preprocessing workflow is established by integrating multivariate scatter correction (MSC) and standardization methods, ensuring the reliability and effectiveness of the data. Based on the processed spectral data, a discriminant model utilizing a linear kernel function support vector machine (SVM) is constructed, focusing on characteristic wavelengths to improve the model's discriminative capability. ResultsCompared to full-spectrum modeling, this approach results in an 8.33% increase in accuracy on the test set. After optimizing the parameters of the SVM model, when C=1.64, the accuracies of the training set and test set reach 91.67% and 94.44%, respectively, demonstrating a 1.19% increase in training set accuracy compared to the unoptimized model, while maintaining the same accuracy on the test set, effectively alleviating issues of underfitting. ConclusionThis study successfully establishes an early discriminant model for tomato early blight using hyperspectral imaging and achieves visualization of early symptoms. Experimental results indicate that the SVM discriminant model based on characteristic wavelengths and a linear kernel function can effectively identify early symptoms of tomato early blight. Visualization of these symptoms in terms of disease probability allows for a more intuitive detection of early diseases and timely implementation of corresponding control measures. This visual analysis not only enhances the efficiency of disease identification but also provides farmers with more straightforward and practical information, aiding them in formulating more reasonable prevention strategies. These research findings provide valuable references for the early identification and visualization of plant diseases, holding significant practical implications for monitoring, identifying, and scientifically preventing crop diseases. Future research could further explore how to apply this model to disease detection in other crops and how to integrate IoT technology to create intelligent disease monitoring systems, enhancing the scientific and efficient management of crops.
3.A finite element analysis of different bone cement injection volumes and distribution patterns in bilateral percutaneous vertebral augmentation
Xiong BAO ; Xiao WU ; Xijie TANG ; Yougao ZHANG ; Jinkui CAI ; Zhanghua LI
Chinese Journal of Tissue Engineering Research 2025;29(10):2006-2014
BACKGROUND:The authors found that when the bilateral percutaneous vertebral augmentation is used to treat osteoporotic vertebral compression fractures with a total bone cement injection of 4 mL or more,different distribution patterns were usually presented on the X-rays;however,there were few reports addressing the effects of these patterns of bone cement distribution on the biomechanical properties of fractural vertebrae. OBJECTIVE:To further explore the biomechanical effects of different bone cement filling doses and distribution patterns on biomechanics of the fractural vertebrae using the finite element method. METHODS:The L1-L3 finite element models of osteoporosis were established,and the vertebral compression fractures were simulated in L2.Four distribution patterns bilateral partial fusion(FH type),full fusion(FO type),symmetrical separation(SA type),and asymmetric segregation(SN type)were simulated in 4 and 6 mL injections in the osteoporotic vertebral compression fracture models,respectively,and a total of nine sets of models were obtained.These models were solved under the same boundary conditions and compared with the stress and displacement of the L2 fractural vertebra. RESULTS AND CONCLUSION:(1)The maximum stresses of the nine groups of models were concentrated in the L2 fractural area,and the maximum stress and maximum displacement of each filling model were lower than in the osteoporotic vertebral compression fracture model,indicating the effectiveness of bone cement filling in the treatment of osteoporotic vertebral compression fracture.(2)Compared with 4 mL bone cement filling,6 mL bone cement filling could significantly reduce the stress of fractured vertebrae and enhance the strength of fractured vertebrae while improving the stability of fractured vertebrae.(3)In the same state of movement,the FH type stress was the least,followed by the SA type,both of which were close.FO type stress was the largest,especially in the lateral bend,which might be associated with its cluster shape resulting in the concentration of lateral stress.In the aspect of displacement,FH type was the least and FO type was the largest.(4)The results show that increased dose of bone cement injection reduces fractural vertebral stress and improves stability,but increases the risk of leakage.Bilateral symmetrical dispersed bone cement(FH type,SA type)is superior in restoring vertebral strength and stability than full fusion(FO type),asymmetric separated(SN type)bone cement.Therefore,when clinically performing bilateral percutaneous vertebral augmentation treatment of osteoporotic vertebral compression fractures,the bilateral symmetric dispersions of the distribution are first guaranteed;priority is recommended for FH type distribution,for appropriate stress stimulation and best stability.
4.Influence of hybridization probe capture and amplicon library construction methods on HLA genotyping resolution level
Xiaoni YUAN ; Tengteng ZHANG ; Yang LI ; Xue JIANG ; Tianjie YANG ; Xiaojing BAO ; Jun HE
Chinese Journal of Blood Transfusion 2025;38(3):303-308
[Objective] To compare next generation sequencing (NGS) library construction technology between probe hybridization capture and amplicon methods, and analyze the influencing factors of HLA genotyping resolution level and its prospects in clinical applications. [Methods] A total of 207 clinical samples with known typing results and samples from the proficiency testing plan were selected. The conformity rate of HLA genotyping results, allele coverage and typing data analysis indicators were confirmed, and the effects of two library construction methods on the level of HLA genotyping discrimination were compared. [Results] The concordance rate of 207 samples with the feedback results of PT or prior well-characterized HLA genotypes was 100%. Among them, 91 samples were captured using hybridization probe capture method. Compared with the original amplicon method, the hybridization probe capture method can distinguish the alleles of DRB1 and DPB1 that cannot be determined in 13 samples. The allelic imbalance of DRB1, DPA1, and DQB1 loci in 6 samples was resolved. Three samples were found to have missed detection of alleles at the DQA1 and DQB1 loci. [Conclusion] The performance indicators of hybridization probe capture and amplicon performance confirmation meet the requirements of clinical detection of HLA genotyping, which provides an experimental method and basis for clinical application.
5.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
6.Effects of different nucleus chopping methods on cornea and tear inflammatory indicators in patients with hard nucleus cataract
Li JIANG ; Lei YANG ; Yuanyuan ZHONG ; Furong LIAO ; Yumeng BAO ; Pengcheng ZHANG
International Eye Science 2025;25(6):951-957
AIM: To compare the effects of different nucleus chopping methods on the central corneal thickness, corneal endothelial cell(CEC)count and tear inflammatory indicators in patients with hard nucleus cataract.METHODS: Retrospective study. Totally 89 patients(89 eyes)with hard nucleus cataract who treated in our hospital were included from January 2020 to December 2022. According to different intraoperative nucleus chopping methods, the patients were divided into reverse prechop group(46 eyes)and phaco-chop group(43 eyes). The total effective rate of surgery and visual acuity recovery were compared between the two groups. Corneal related indicators(central corneal thickness, CEC count, CEC area), tear inflammatory indicators and tear film function [tear film break-up time(BUT), Chinese Dry Eye Questionnaire(CDEQ), Schirmer Ⅰ test(SⅠt)] were observed before and after surgery in both groups, and the degree of corneal edema was evaluated.RESULTS: The effective phaco time, phaco energy and cumulative complex energy parameters in the phaco-chop group were longer or higher than those in the reverse prechop group(P<0.05). The macular retinal thickness in the reverse prechop group at 7 d and 1 mo after surgery was thinner than that in the phaco-chop group, the central corneal thickness at 3 and 7 d after surgery was also thinner than that in the phaco-chop group, the CEC count at 3 mo after surgery was more than that in the phaco-chop group, the CEC loss rate was lower than that in the phaco-chop group, and the CEC area at 3 mo after surgery was smaller than that in the phaco-chop group(P<0.05). The levels of tear TNF-α and IL-6 at 7 d and 1 mo after surgery in the reverse prechop group were lower than those in the phaco-chop group(P<0.05). The BUT at 1 and 3 mo after surgery was longer in the reverse prechop group than that in the phaco-chop group(P<0.05). The CDEQ score in the reverse prechop group was lower than that in the phaco-chop group at 1 and 3 mo after surgery(P<0.05). The SⅠt at 1 and 3 mo after surgery was higher in the reverse prechop group compared with that in the phaco-chop group(P<0.05). The degree of corneal edema at 1 d after surgery was milder in the reverse prechop group than that in the phaco-chop group(P<0.05). CONCLUSION: Compared with phaco-chop, the application of reverse-chopper prechop combined with phacoemulsification can better reduce the ultrasonic energy in the treatment of hard nuclear cataract, and it is more conducive to reducing the postoperative inflammatory degree, improving the tear film function and relieving the corneal edema degree.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.Research Status and Design Ideas of Placebo Manipulation in Clinical Trial Design of Tuina
Jingui WANG ; Haining ZHANG ; Shun FAN ; Yusheng LI ; Hongyi WANG ; An BAO ; Wei ZHANG ; Huanan LI
Journal of Traditional Chinese Medicine 2025;66(11):1128-1132
The rationale for the design of control groups in tuina clinical trial is the foundation for rigorously validating the effectiveness and safety of this therapy. This article reviewed the current state of the design of tuina placebo in control groups of clinical trials, pointed out the necessity of setting up tuina placebo in clinical trials of tuina, analyzed the challenges in implementing blinding of tuina manipulation, and concluded that tuina placebo is still challenged by the placebo effect, the diversification of tuina manipulation but the lack of standardization, and the difficulty of implementing blinding due to the high level of public awareness of tuina. This article also summarized the design of placebo manipulation in three types of clinical trials, including spinal manipulation, acupressure, and paediatric tuina, and proposed four strategies for designing placebo tuina manipulation-controlling placebo effects, developing operational standards for placebo tuina manipulation, ensuring the rigor of blinding implementation, and applying new technologies to enhance the standardization and blinding capacity of placebo tuina methods. So the article is aimed at improving the methodological quality of tuina clinical trial designs, and promoting the standardization and scientificity of tuina clinical trial design.
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
10.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.

Result Analysis
Print
Save
E-mail