1.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
2.Molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against Oncomelania hupensis in marshland areas
Chunli CAO ; Jianfeng ZHANG ; Yefang LI ; Xuehui SHEN ; Junyi HE ; Ziping BAO ; Suying GUO ; Kun YANG ; Jing XU ; Shizhu LI ; Xiaonong ZHOU
Chinese Journal of Schistosomiasis Control 2024;36(5):531-534
Objective To evaluate the molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against of Oncomelania hupensis snails in snail habitats in marshland areas. Methods From September to October, 2022, marshlands were sampled from Dantu District, Zhenjiang City, Jiangsu Province as study areas, and assigned into four groups, of approximately 3 000 m2 per group. In Group A, environmental cleaning was performed, followed by spraying 5% niclosamide ethanolamine salt granules with knapsack sprayers at a dose of 40 g/m2, and in Group B, 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2 without environmental cleaning, while in Group C, environmental cleaning was conducted, followed by spraying 5% niclosamide ethanolamine salt granules with drones at a dose of 40 g/m2, and in Group D, 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2 without environmental cleaning. Then, the study areas in each group were equally divided into six blocks, with Block 1 for baseline surveys and blocks 2 to 6 for snail surveys 1, 3, 5, 7, 14 days following chemical treatment. The mortality of snails and the reduction of the density of living snails were calculated. Results A total of 132 frames were surveyed during the period from September to October 2022, and the occurrence of frames with living snails and means density of living snails were 61.36% (81/132) and 1.58 snails/0.1 m2, respectively. The overall mortality rates of snails were 43.02% (77/179), 38.69% (77/199), 47.78% (86/180) and 31.02% (58/187) 14 days following chemical treatment in groups A, B, C and D, respectively (χ2 = 11.646, P < 0.05), and there were differences detected in the snail mortality between group A and D, and between groups C and D (both Padjusted values < 0.05). The adjusted mortality rates of snails were 37.42%, 36.07%, 38.85% and 40.40% in groups A, B, C and D 14 days post-treatment, and the density of living snails decreased by 48.10%, 63.29%, 67.09% and 69.62% 14 days post-treatment relative to pre-treatment, respectively. Conclusions Chemical treatment with drones is feasible for O. hupensis snail control in marshland areas; however, the molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones is comparable to spraying chemicals manually in marshland areas regardless of environmental cleaning.
3.Efficacy of autofluorescence point-spectral analysis combined with the immune colloidal gold technique for the detection of ectopic microscopic parathyroid glands to guide surgery for secondary hyperparathyroidism
Kun PENG ; Baozhong YAO ; Hongcun CHEN ; Jun ZHANG ; Wenzhong BAO ; Wenbo LI ; Weitao SONG ; Sailong SANG ; Li LIN ; Zhixing JIA ; Liang LI
The Journal of Practical Medicine 2024;40(20):2905-2912
Objective To evaluate the intraoperative identification of ectopic parathyroid tissue in the central neck region using autofluorescence point-spectral analysis(AFPSA)combined with immune colloidal gold technique(ICGT),for guiding total parathyroidectomy(TPTX)or clean parathyroidectomy(CPTX)in the management of secondary hyperparathyroidism(SHPT).Methods Retrospectively collected and compared the clinical data of 64 patients with SHPT from October 2019 to June 2023.In the observation group,TPTX was performed as the initial procedure in 36 cases,followed by sampling of suspicious targets using AFPSA in the central neck area and subsequent detection through ICGT.CPTX was then conducted if a positive result was obtained.On the other hand,the control group consisted of 28 cases where only TPTX was performed without any additional tests during surgery.The surgical data,parathyroid hormone(PTH)levels,blood calcium levels,blood phosphorus levels,alkaline phosphatase(ALP)levels,regression of clinical symptoms,changes in parathyroid function and occurrence of hypocalcemia were compared between these two groups.Results In the observation group,there were 9 cases of AFPSA-ICGT positivity,including 2 left-sided cases,4 right-sided cases,and 3 thymic cases;among these posi-tive cases,there were a total of 10 locations with mildly hyperplastic or nonhyperplastic microscopic parathyroid tissue.The difference in the number of total parathyroid glands removed(including ectopic)between the two groups was statistically significant(P<0.05).At both 3 and 6 months postoperatively,ALP levels in the observation group were significantly lower than those in the control group(P<0.01 and P<0.001 respectively);at 6 months postoperatively,differences in PTH and blood phosphorus levels between the two groups were also statistically significant(P<0.05 and P<0.001 respectively).Joint bone pain and skin itching recurred in some patients within the control group at six months after surgery(P<0.05),whereas recurrence of SHPT was less frequent within the observation group compared to controls(P<0.05);however,no statistically significant differences were observed regarding postoperative hypoparathyroidism or hyperparathyroidism as well as hypocalcemia between either groups.Conclusion The AFPSA-ICGT intraoperative test can be utilized to guide surgery for SHPT,enabling accurate and efficient identification as well as safe targeting of parathyroid tissues that may not exhibit obvious hyperplasia in the central cervical region.
4.Effects of total flavonoids of Oxytropis falcata Bunge on CCl4-induced liver fibrosis in rats
Tian-Yan YANG ; Xin-Huan MA ; Zhi-Wei XU ; Rong-Kun LI ; Fang-Xiong MA ; Bao-Feng HE ; Liang CHEN ; Xiao-Qing CHEN ; Jun ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2073-2077
Objective To investigate the effects of total flavones from Oxytropis falcata Bunge on hepatic fibrosis(HF)induced by carbon tetrachloride and liver transforming growth factor(TGF-β)/Smad signaling pathway.Methods Forty-eight male rats were randomly divided into normal group(intraperitoneal injection of peanut oil,intragastric administration of 0.9%NaCl),model group(intraperitoneal injection of 40%CC14 peanut oil solution induced HF model,intragastric administration of 0.9%NaCl),positive control group(modeling,intragastric administration of 0.2 mg·kg-1 of colchicine),experimental-L,-M,-H groups(modeling,intragastric administration of 100,200 and 400 mg·kg-1 of total flavonoid extract of Oxytropis falcata Bunge),8 individuals in each group,for 4 consecutive weeks.The histopathological changes were observed by hematoxylin-eosin and Masson staining.Serum liver function and liver fibrosis were measured;erum inflammatory factors were detected;fluorescence quantitative polymerase chain reaction(RT-qPCR)was used to determine gene expression in liver.Results The pathological injury of liver tissue in the model group was serious,and a large number of inflammatory factors and collagen fibers were accumulated,while the rest of the treatment groups had different degrees of remission.In normal group,model group,positive control group,experimental-L,-M,-H groups,glutamic-pyruvic transaminase levels were(49.28±12.44),(5 885.42±948.37),(4 454.60±489.27),(4 650.47±843.53),(3 761.75±887.30)and(3 544.90±1 066.75)μg·L-1;glutamic-oxaloacetic transaminase levels were(186.90±46.89),(5 936.23±793.81),(3 971.37±780.28),(4 360.30±863.35),(3 943.10±439.47)and(3 971.38±631.08)μg·L-1;hyaluronic acid levels were(45.08±17.16),(104.32±36.06),(66.83±20.09),(70.30±21.07),(60.00±9.68)and(59.02±10.73)μg·L-1;laminin levels were(23.13±3.89),(60.85±13.66),(35.67±9.92),(39.98±9.39),(36.55±12.21)and(34.68±24.83)μg·L-1;type Ⅲ procollagen level were(24.98±5.34),(82.58±30.14),(40.70±16.14),(51.08±23.21),(43.60±12.48)and(44.20±11.66)p±g·L-1;interleukin(IL)-1β levels were(37.63±1.24),(46.10±3.23),(39.22±2.36),(41.33±0.93),(40.25±2.04)and(39.18±2.23)pg·mL-1;tumor necrosis factor-α levels were(314.58±20.56),(383.71±16.97),(349.00±7.93),(348.88±25.11),(325.75±27.84)and(335.07±21.33)pg·mL-1;TGF-β1 mRNA expression of relative quantity respectively were 1.00±0.00,60.99±15.70,9.61±1.59,7.37±1.09,6.41±0.64,6.87±1.09;Smad7 mRNA relative expression were 1.00±0.00,0.34±0.05,0.21±0.03,0.35±0.02,0.38±0.02,0.42±0.03.The above indexes in the model group were compared with the normal group,and the above indexes in the experimental-M,-H groups were compared with the model group,and the differences were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion Total flavonoids of Oxytropis falcata Bunge have protective effects on CC14-induced liver fibrosis in rats,and the mechanism may be related to the regulation of TGF-β/Smad pathway.
5.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
6.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Analysis of indicators related to visceral fat index based on the random forest model
Haijun CHEN ; Di LIU ; Yue SHI ; Yuze LI ; Hongxia GUO ; Jinhua BAO ; Chaorui XU ; Kun ZHANG
Chinese Journal of Health Management 2023;17(1):41-46
Objective:To explore indicators related to visceral fat index by constructing a random forest model.Methods:In this cross-sectional study, the laboratory measures and body composition analysis records of 617 hospital employees (in-service and retired) who underwent physical examination in Heilongjiang Provincial Hospital Health Management Center from March to September 2021 were selected. The subjects were divided into a training set ( n=411) and a test set ( n=206) with the ratio of 2∶1. A total of 110 predictors were included in the model. The model was constructed with the training set and was evaluated with the test set. The optimal number of nodes and decision trees were selected to evaluate the prediction performance of the optimal model. And the top 10 relatively important factors were selected for further investigation. The 617 participants were further divided in to groups according to the visceral fat index: the normal or high visceral fat index group, and the differences of the top 10 relatively important factors were further compared between the two groups. Results:The optimal number of nodes of the final random forest model was 39 and the number of decision trees was 300. The accuracy, precision, sensitivity and specificity of the model was 83.3%, 73.9%, 89.4% and 78.7%, respectively. The area under the receiver operating characteristic curve and 95% confidence interval of the model was 0.881 (0.832-0.931). The top 10 relatively important factors in the model were body mass index, gender, age, serum uric acid, red blood cell count, monocyte cell count, C-peptide, carcinoembryonic antigen, glycosylated hemoglobin and glutamyl transpeptidase. There were significant differences in the up-mentioned 10 indicators between the subjects with normal and high visceral fat index (all P<0.05). Conclusions:The random forest model built in this study has good performance in predicting visceral fat index, and visceral fat is related with changes in liver function, pancreas function and immune function.

Result Analysis
Print
Save
E-mail