1.Research progress on scientific connotations of decocting methods in traditional Chinese medicine decoction.
Feng-Xia WANG ; Fang-Wen CHEN ; Cheng-Ying SHEN ; Peng-Fei YUE ; Bao-de SHEN
China Journal of Chinese Materia Medica 2025;50(4):994-999
The therapeutic effects of traditional Chinese medicine(TCM) decoction is closely related to its decocting methods. A correct understanding of the scientific connotations of decocting methods in TCM is of great significance for guiding the application of decoctions and the development of modern TCM preparations based on decoctions. The decocting process is not only a hot water extraction process of chemical components but also accompanied by complex chemical and physical changes, forming a complex multiphase system and significantly affecting the absorption and therapeutic effect of TCM. This article reviews the research progress in scientific connotations of decocting methods in TCM from the perspectives of chemical composition changes, phase state differences,absorption behavior changes, and pharmacological and toxicological changes caused by decocting. This review is expected to provide implications for studying decocting methods and their scientific interpretation, boost the innovation and development of TCM decoctions,and promote the design and development of modern TCM preparations.
Drugs, Chinese Herbal/isolation & purification*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Animals
2.Efficacy and Safety of Erzhu Jiedu Decoction Granules in Treating Mid-advanced Hepatitis B Virus-Associated Primary Liver Cancer Patients with Pi (Spleen)-Deficiency and Dampness-Heat Syndrome.
Yang CHENG ; Hao-Yi WANG ; Cheng-Yi WAN ; Jie-Wen SHI ; Yuan-Yuan JIN ; Sheng-Li HE ; Bao-Bing YIN ; Jian-Jie CHEN
Chinese journal of integrative medicine 2025;31(5):394-401
OBJECTIVE:
To assess the efficacy and safety of Erzhu Jiedu Decoction (EZJDD) Granules in treating mid-advanced hepatitis B virus-associated primary liver cancer (HBV-PLC) patients with Pi (Spleen)-deficiency and dampness-heat syndrome.
METHODS:
From January 2021 to June 2023, a cohort of 132 patients were enrolled and randomly assigned to a control group or a EZJDD group according to the random numbers, with 66 patients in each group. The patients in the control group received conventional treatment for 3 months, followed by a 3-month follow-up. In addition to the conventional treatment, patients in the EZJDD group were administered EZJDD Granules (10.9 g/pack, 2 packs twice per day) orally for same duration. Progression-free survival (PFS) as primary outcome was evaluated by Kaplan Meier method. Karnofsky performance status (KPS) scores were used to assess the quality of life in two groups before and after treatment, and survival rates were determined as well. The efficacy of Chinese medicine syndrome was calculated with Nimodipine method. Liver function, tumor indicators and T lymphocyte subsets were measured, respectively. Safety indicators were recorded and assessed.
RESULTS:
Of the 116 patients who completed the study, 57 were in the control group and 59 in the EZJDD group. The median PFS was 3.53 months (106 days) in the EZJDD group compared to 2.33 months (70 days) in the control group (P=0.005). Six-month survival rate was 52.63% (30/57) in the control group and 69.49% (41/59) in the EZJDD group (P=0.039). The median KPS score in the EZJDD group [70(63, 90)] was higher than that in the control group [70(60, 80)] (P=0.013). The total effective rate of CM syndrome was 52.63% (30/57) in the control group and 77.97% (46/59) in the EZJDD group (P=0.005). The levels of alpha fetoprotein, alpha fetoprotein-L3, alpha-L-fucosidase and protein induced by Vitamin K absence or antagonist- II in the EZJDD group increased less than the control group (P>0.05). CD8+ levels were decreased, while CD3+ and CD4+ levels, as well as CD4+/CD8+ ratio were significantly increased in the EZZJD group (P<0.05). No treatment-related adverse reactions were observed during the study.
CONCLUSION
EZJDD Granules significantly prolonged the median PFS and improved 6-month survival rate in patients with mid-advanced HBV-PLC (Registration No. ChiCTR2200056922).
Humans
;
Drugs, Chinese Herbal/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Liver Neoplasms/complications*
;
Hepatitis B virus/physiology*
;
Hepatitis B/complications*
;
Treatment Outcome
;
Adult
;
Spleen/drug effects*
;
Quality of Life
;
Medicine, Chinese Traditional
;
Aged
;
Syndrome
3.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
4.Cephalometric parameters of three Wa dialect ethnic groups in China
Yue-Tong YAO ; Ke-Li YU ; Xing-Hua ZHANG ; Xin-Ying GAO ; Yao XIAO ; Zhi CHENG ; Wen-Fang GAO ; Xin LIU ; Jin-Ping BAO
Acta Anatomica Sinica 2024;55(5):625-631
Objective To survey and analysis of cephalometric indicators of Wa adults in China.Methods Cephalometric parameters were measured in 1996 cases(858 males and 1138 females)of Wa adults in China,including 927 cases(381 males and 546 females)of the Baraoke ethnic group,564 cases(241 males and 323 females)of the A Wa ethnic group,and 505 cases(236 males and 269 females)of the Wa ethnic group by using sliding caliper and spreading caliper.Seventeen direct cephalofacial parameters and one indirect parameter for each of the three dialect ethnic groups were derived separately and analyzed for age correlations,inter-sex u-tests,and multiple comparisons.Finally,the three dialect ethnic groups were subjected to cluster analysis and principal component analysis with 15 ethnic groups in China.Results Nose breadth,mouth breadth and physiognomic ear length were significantly and positively correlated with age for both sexes in the three Wa dialect ethnic groups,while head breadth and lip height were significantly and negatively correlated with age.Except for the interocular breadth,there were gender differences between males and females in the cephalometric parameters of the three Wa dialect ethnic groups.The cephalofacial features of the Baraoke,A Wa and Wa ethnic groups were different,as evidenced by the fact that males and females of the Baraoke and Wa dialect ethnic group had higher lip height,wider nasal breadth and wider mouth breadth,while males and females of the A Wa ethnic group had lower nasal height.Conclusion The cephalofacial features of the three Wa dialect ethnic groups are close to those of the Khmus and Mang,who have their origins in the ancient Baipu people and are also members of the Mon-Khmer language group of the Austroasiatic linguistic.
5.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
6.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
7.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
8.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Clinical application of targeted sealing with high viscosity bone cement and secondary injection of low viscosity bone cement in vertebroplasty.
Cheng-Zhou LIU ; Bao-Xin JIA ; Xiao-Qiang GAO ; Wen-Yin LI ; Ai-Guo LIU ; Cong-Hui REN
China Journal of Orthopaedics and Traumatology 2023;36(1):38-42
OBJECTIVE:
To observe the clinical efficacy of targeted sealing with high viscosity bone cement and secondary injection of low viscosity bone cement in the treatment of OVCFs patients with the fracture lines involved vertebral body margin.
METHODS:
The elderly patients who underwent vertebroplasty for osteoporotic vertebral compression fractures from January 2019 to September 2021 were selected as the screening objects. Through relevant standards and further CT examination, 56 patients with fracture lines involving the anterior wall or upper and lower endplates of the vertebral body were selected for the study. There were 21 males and 35 females, aged from 67 to 89 years old with an average of (76.58±9.68) years. All 56 patients underwent secondary injection of bone cement during operation. Only a small amount of high viscosity cement was targeted to seal the edge of the vertebral body for the first time, and low viscosity cement was injected to the vertebral bodies during second bolus with well-distributed. The operation time, bone cement volume and bone cement leakage were recorded, and the pain relief was evaluated by visual analogue scale (VAS).
RESULTS:
All patients were followed up for more than 3 months and the surgeries were successfully complete. The operation time was (50.41±10.30) min and the bone cement volume was (3.64±1.29) ml. The preoperative VAS was (7.21±2.41) points, which decreased significantly to (2.81±0.97) points 3 days after operation(P<0.05). Among the 56 patients, 2 cases(3.57%) had bone cement leakage, 1 case leaked to the paravertebral vein, and 1 case slightly bulged to the paravertebral through the crack when plugging the vertebral crack. Both patients had no obvious clinical symptoms.
CONCLUSION
In vertebroplasty surgery, targeted sealing of high viscosity bone cement and secondary injection of low viscosity bone cement can reduce intraoperative bone cement leakage and improve the safety of operation.
Male
;
Female
;
Humans
;
Aged
;
Aged, 80 and over
;
Bone Cements/therapeutic use*
;
Fractures, Compression/etiology*
;
Spinal Fractures/surgery*
;
Viscosity
;
Osteoporotic Fractures/surgery*
;
Retrospective Studies
;
Vertebroplasty/adverse effects*
;
Treatment Outcome

Result Analysis
Print
Save
E-mail