1.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
2.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
3.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain by Regulating PD-1/PD-L1-induced Osteoclast Formation
Lu SHANG ; Juanxia REN ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):72-79
ObjectiveThis study aims to investigate the action mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) by regulating programmed death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway-induced osteoclast formation. MethodsThirty female C57BL/6 mice were randomly allocated into the following groups (n=6 per group): normal control group, model group, low‑dose XZP group (31.5 g·kg-1), high‑dose XZP group (63 g·kg-1), and PD‑1 inhibitor (Niv) group. A bone cancer pain (BCP) model was established by injecting Lewis lung carcinoma cells. Mice in the normal control and model groups received topical application of a blank paste matrix at the wound site. Mice in the low‑ and high‑dose XZP groups were treated with XZP applied topically twice daily. Mice in the Niv group were topically administered the blank paste matrix and additionally received Niv via tail‑vein injection every two days. All interventions were continued for 21 days. During this period, behavioral tests were performed to assess mechanical, motor, and thermal nociceptive sensitivities. After 21 days, all mice were euthanized, and bone tissue from the operated side was collected for sectioning and preservation. Tartrate‑resistant acid phosphatase (TRAP) staining was used to evaluate osteoclast expression in the lesioned bone tissue. Immunohistochemistry was performed to detect the expression of Runt‑related transcription factor 2 (Runx2) in the lesioned bone tissue. Immunofluorescence was employed to assess the expression of PD‑1 and PD‑L1 in the lesioned bone tissue. ResultsCompared with the normal group, the model group showed significantly decreased limb mechanical withdrawal threshold, spontaneous paw flinching, and thermal withdrawal latency (P<0.01), increased number of osteoclasts in the lesioned bone tissue (P<0.01), and reduced expression of Runx2 (P<0.01). Compared with the model group, the BCP mice in the XZP low-dose group, XZP high-dose group, and Niv group exhibited increased limb mechanical withdrawal threshold, movement scores, and thermal withdrawal latency (P<0.01). The XZP low-dose group showed no significant changes in osteoclast number or Runx2 expression, while the XZP high-dose group and Niv group demonstrated significantly reduced osteoclast numbers (P<0.01) and significantly increased Runx2 expression (P<0.01). In the lesioned bone tissue of BCP mice, the XZP low-dose group showed no significant decrease in the percentage of PD-1 expression, but a decrease in the percentage of PD-L1 expression (P<0.05). In contrast, both the XZP high-dose group and the Niv group exhibited significant reductions in the percentages of PD-1 and PD-L1 expression (P<0.01). ConclusionXZP alleviates the pain of mice with BCP by blocking the PD-1/PD-L1 pathway to inhibit osteoclastogenesis.
4.Mechanism of Xiaozheng Zhitong Paste in Alleviating Bone Cancer Pain by Regulating Microglial Pyroptosis Based on PINK1/Parkin/NLRP3 Signaling Pathway
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):80-90
ObjectiveThe paper aims to investigate the mechanism by which Xiaozheng Zhitong paste (XZP) alleviates bone cancer pain (BCP) through regulating the PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy-NOD-like receptor protein 3 (NLRP3) inflammasome pathway to suppress microglial pyroptosis. MethodsLipopolysaccharide (LPS) and LPS-adenosine triphosphate (ATP) were used to establish an inflammation and pyroptosis model in microglial cells. The cells were randomly divided into the following groups: control group, LPS group, LPS+low-dose XZP group, LPS+high-dose XZP group, LPS-ATP group, LPS-ATP+low-dose XZP group, LPS-ATP+high-dose XZP group, LPS-ATP+XZP group, and LPS-ATP+XZP+CsA group. Techniques including terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), Western blot, and confocal fluorescence staining were employed to assess the effects of XZP on microglial apoptosis, inflammatory cytokine release, inflammasome activation, pyroptosis, and mitophagy. ResultsIn vitro experiments showed that compared with the blank group, the LPS group exhibited significantly increased levels of microglial apoptosis and pro-inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)(P<0.01), along with significantly upregulated protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated nuclear factor-κB p65 (p-NF-κB p65) (P<0.01). Compared with the LPS group, the high-dose LPS-XZP group significantly reduced the level of apoptosis (P<0.01) and the content of the aforementioned pro-inflammatory factors (P<0.01). Both the low- and high-dose LPS-XZP groups dose-dependently downregulated the protein expression of iNOS, COX-2, and p-NF-κB p65 (P<0.05, P<0.01). Compared with the blank group, the LPS-ATP group showed significantly upregulated expression of pyroptosis-related proteins, including Caspase-1/pro-Caspase-1, N-terminal fragment of gasdermin D (GSDMD-N)/full-length gasdermin D (GSDMD-F), NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β precursor (pro-IL-1β), and mature IL-1β (P<0.01). The levels of pyroptotic factors IL-1β and IL-18 were significantly elevated (P<0.01), and membrane pore formation and intracellular reactive oxygen species (ROS) levels were significantly increased (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently downregulated the expression of the aforementioned pyroptosis-related proteins (P<0.05, P<0.01). The low-dose LPS-ATP+XZP group reduced IL-1β levels (P<0.01), while the high-dose group reduced both IL-1β and IL-18 levels (P<0.01) Both the low- and high-dose LPS-ATP+XZP groups dose-dependently reduced membrane pore formation and intracellular ROS production (P<0.01). Compared with the blank group, the LPS-ATP group showed significantly reduced expression of mitophagy-related proteins PINK1 and Parkin, and a decreased ratio of microtubule-associated protein 1 light chain 3Ⅱ(LC3Ⅱ) to LC3Ⅰ(P<0.01), while p62 expression was significantly increased (P<0.01). Mitochondrial ROS levels were significantly enhanced (P<0.01). Compared with the LPS-ATP group, both the low- and high-dose LPS-ATP+XZP groups dose-dependently reversed the expression of these proteins (P<0.05, P<0.01) and reduced mitochondrial ROS levels (P<0.01). After treatment with the mitophagy inhibitor cyclosporin A (CsA), the beneficial effects of XZP on mitochondrial function and its inhibitory effects on pyroptosis-related protein expression were significantly reversed (P<0.05, P<0.01). ConclusionXZP reduces ROS levels by activating PINK1/Parkin-mediated mitophagy, thereby inhibiting NLRP3 inflammasome activation and microglial pyroptosis, which provides new molecular evidence for the mechanism by which XZP alleviates BCP.
5.Xiaozheng Zhitong Paste Relieves Bone Cancer Pain in Mice by Alleviating Activation of Microglia in Spinal Cord and Damage to Neurons via Blocking PAR2/NF-κB/NLRP3 Pathway
Guangda ZHENG ; Linghan MENG ; Lu SHANG ; Juanxia REN ; Dongtao LI ; Haixiao LIU ; Lingyun WANG ; Changlin LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):91-100
ObjectiveTo investigate the effects and underlying mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain (BCP). MethodsThirty female BALB/c mice were randomly divided into five groups: a Sham group, a BCP group, a BCP+low-dose XZP group, a BCP+high-dose XZP group, and a BCP+high-dose XZP + protease-activated receptor 2 (PAR2) agonist GB-110 group. BCP mice model was constructed by injecting Lewis lung carcinoma cells into the femoral cavity of the right leg, which was followed by being treated with XZP for 21 d. After 21 d, the mice were sacrificed. Nissl staining was used to evaluate the survival of spinal cord neurons. Immunofluorescence staining was conducted to localize ionized calcium-binding adapter molecule 1 (Iba1) and neuronal nuclear antigen (NeuN) in spinal cord tissue, thereby assessing microglial activation and neuronal survival. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), transforming growth factor-β (TGF-β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in spinal cord tissue. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels associated with M1/M2 polarization of microglia. Western blot analysis was performed to examine the expression of proteins related to microglial polarization as well as those involved in the PAR2/nuclear factor kappa B (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway in the spinal cord. ResultsCompared with the Sham group, the spinal cord neurons were damaged, the number of Nissl-positive spinal cord neurons in the spinal cord tissue was significantly reduced (P<0.01), and the rate of NeuN-positive cells was significantly decreased (P<0.01). The spinal cord microglia were activated, the inflammatory level of the spinal cord tissue was enhanced, and Iba1 staining was significantly enhanced (P<0.01). The levels of IL-1β, TNF-α, IL-6, TGF-β, IL-4 and IL-10 were significantly increased (P<0.01). The mRNA expressions of IL-1β, TNF-α and inducible nitric oxide synthase (iNOS) were significantly increased (P<0.01), and the expression of PAR2, NLRP3, ASC and NF-κB p65 proteins in the spinal cord tissue of the BCP mice was significantly enhanced (P<0.01). Compared with the BCP group, high-dose XZP treatment significantly increased the number of Nissl-positive spinal cord neurons in the BCP mice (P<0.01), significantly enhanced the rate of NeuN-positive cells in the spinal cord tissue, and significantly weakened Iba1 staining (P<0.01). In addition, the levels of IL-1β, TNF-α, and IL-6 were significantly decreased, while the levels of TGF-β, IL-4, and IL-10 were significantly increased (P<0.05, P<0.01). The mRNA expression levels of IL-1β, TNF-α, and iNOS were decreased, whereas those of cluster of differentiation 206 (CD206), arginase-1 (Arg-1), and YM1/2 were significantly increased (P<0.05, P<0.01). Low-dose and high-dose XZP treatment significantly decreased the expression of PAR2, NLRP3, ASC, and NF-κB p65 proteins in the spinal cord tissue (P<0.05, P<0.01). These effects could all be significantly eliminated by the PAR2 agonist GB-110. ConclusionXZP can mitigate BCP in mice, which may be achieved through blocking the activated PAR2/NF-κB/NLRP3 pathway.
6.Xiaozheng Zhitong Paste Alleviates Bone Cancer Pain of Mice by Reducing Ferroptosis in Spinal Cord Tissue and Neuronal Damage via Regulating Nrf2/HO-1/GPX4/SLC7A11 Signaling Pathway
Juanxia REN ; Lu SHANG ; Guangda ZHENG ; Linghan MENG ; Lingyun WANG ; Changlin LI ; Dongtao LI ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):101-113
ObjectiveThe paper aims to investigate the action mechanism by which the Xiaozheng Zhitong paste (XZP) relieves bone cancer pain (BCP). MethodsA model of mice with BCP was established by using Lewis tumor cells. The therapeutic effects of XZP, the ferroptosis inhibitor Ferrostatin-1 (Fer-1), and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor Brusatol (Bru) on BCP were examined. Mice were randomly divided into the Sham operation group, BCP group, BCP+XZP-L group, BCP+XZP-H group, BCP+Fer-1 group, and BCP+XZP-H+Bru group, with six mice in each group. Pain behavior tests were conducted on the mice to assess pain levels. Colorimetric assays were employed to measure ferroptosis-related factors in serum and spinal cord tissue including Fe, malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). Immunofluorescence staining was used to assess ROS production in spinal cord tissue. Transmission electron microscopy was used to observe the ultrastructure of mitochondria in lumbar spinal cord tissue. Quantitative real-time polymerase chain reaction (Real-time PCR) was employed to detect mRNA expression of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in spinal cord neuron tissue. The protein expression of Nrf2, HO-1, GPX4, and SLC7A11 in spinal cord neurons was measured by Western blot. ResultsCompared with the Sham group, mice in the BCP group exhibited significantly reduced limb usage scores, mechanical foot withdrawal thresholds, and thermal foot withdrawal thresholds (P<0.01). Serum and lumbar spinal cord tissue levels of Fe, MDA, and reactive oxygen species (ROS) were significantly elevated (P<0.05), while superoxide dismutase (SOD) levels were significantly decreased (P<0.05). Lumbar spinal cord mitochondrial structural damage was observed, and mRNA and protein expression of Nrf2, HO-1, GPX4, and SLC7A11 were significantly downregulated (P<0.01). Compared with the BCP group, both low- and high-dose XZP groups improved the aforementioned pain behavioral indicators (P<0.05,P<0.01), reduced ferroptosis-related biomarkers including Fe, MDA, and ROS levels (P<0.05), increased SOD levels (P<0.05,P<0.01), alleviated mitochondrial damage, and upregulated Nrf2, HO-1, GPX4, SLC7A11 mRNA and protein expression (P<0.05,P<0.01). The high-dose XZP group exhibited comparable efficacy to Fer-1 in alleviating pain and inhibiting ferroptosis. Following Bru administration, XZP's effects on pain behavioral indicators, regulation of ferroptosis-related markers, mitochondrial structural protection, and activation of the Nrf2/HO-1/GPX4/SLC7A11 pathway were significantly reversed (P<0.05,P<0.01). ConclusionExternal application of XZP alleviates pain symptoms in BCP mice by activating the Nrf2/HO-1/GPX4/SLC7A11 pathway, thereby inhibiting ferroptosis and neuronal damage in spinal cord neurons.
7.Traditional Chinese Medicine for Cancer Pain Management: A Review
Lingyun WANG ; Guangda ZHENG ; Lu SHANG ; Juanxia REN ; Changlin LI ; Dongtao LI ; Haixiao LIU ; Yaohua CHEN ; Guiping YANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):114-123
Cancer pain is one of the most common complications in patients with malignant tumors, severely affecting their quality of life. Its pathogenesis involves complex interactions among the tumor microenvironment, peripheral sensitization, and central sensitization. The tumor microenvironment initiates peripheral pain sensitization by secreting algogenic mediators, activating ion channels and related receptor signaling pathways, driving abnormal osteoclast activation, and mediating neuro-immune crosstalk. Persistent nociceptive input further triggers increased excitability of central neurons, activation of glial cells, and neuroinflammatory cascade reactions, ultimately leading to central pain sensitization. Although traditional opioid drugs can alleviate pain to some extent, they still have many limitations, such as incomplete analgesia, drug tolerance, and adverse reactions. In recent years, traditional Chinese medicine (TCM) compounds have made continuous progress in the treatment of cancer pain. Studies have shown that they can not only effectively relieve cancer pain and reduce the dosage of opioids but also significantly improve patients' quality of life. TCM treatment of cancer pain follows the principle of syndrome differentiation and treatment. Based on this, targeted therapeutic principles have been proposed, including promoting blood circulation, removing stasis, regulating Qi, and unblocking collaterals; tonifying the kidney, replenishing essence, warming Yang, and dispersing cold, activating blood, resolving phlegm, detoxifying, and dispersing nodules, as well as strengthening the body, replenishing deficiency, and harmonizing Qi and blood. Modern research indicates that TCM compounds can exert synergistic effects through multiple pathways, inhibiting inflammatory responses, regulating nerve conduction, intervening in bone metabolism and related gene expression, thereby producing anti-inflammatory and bone-protective effects to achieve the goal of alleviating cancer pain. This article systematically elaborates on the pathogenesis of cancer pain, the clinical application of TCM in treating cancer pain, and its related mechanisms of action, aiming to provide a theoretical basis and new strategies for the integration of TCM into comprehensive cancer pain management.
8.Discussion on Treatment of Cancer Pain with Modified Wumeiwan Based on Jueyin Syndrome
Haixiao LIU ; Linghan MENG ; Guangda ZHENG ; Dongtao LI ; Lu SHANG ; Juanxia REN ; Changlin LI ; Lingyun WANG ; Yanju BAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):124-128
Pain, as one of the most common symptoms in cancer patients, seriously affects the survival quality of patients. The three-step pain relief program currently used in clinical practice cannot completely relieve pain in cancer patients and is accompanied by many problems. From the perspective of Jueyin syndrome in traditional Chinese medicine (TCM), this paper believed that the core pathogenesis of cancer pain was declined healthy Qi and cold and heat in complexity, and used Wumeiwan as the main formula with modification according to syndrome for clearing the upper, warming the lower part of the body, and harmonizing the cold and heat. It can regulate the pathological environment of deficiency, cold, stasis, toxicity, and heat, and restore the physiological function of Yang transforming Qi while Yin constituting form, so as to prevent, relieve, and even eliminate cancer pain, having achieved good clinical efficacy. It can not only help cancer patients relieve pain, but also control tumor and eliminate tumor, achieving a dual benefit of pain relief and tumor suppression. It gives full play to the characteristics and advantages of syndrome differentiation and treatment in TCM, and expands the scope of ZHANG Zhongjing's treatment for Jueyin syndrome, which provides ideas for the clinical diagnosis and treatment of cancer pain from the perspective of deficiency-excess in complexity and cold and heat in complexity.
9.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
10.Mechanism of in Vitro and in vivo Models of Osteoporosis Regulation by Active Ingredients of Traditional Chinese Medicine: A Review
Ming YANG ; Jinji WANG ; Xuefeng ZHUANG ; Xiaolei FANG ; Zhijie ZHU ; Huiwei BAO ; Lijing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):281-289
Osteoporosis is a common bone disease, whose incidence is still on the rise, posing great challenges to patients and society. This review mainly studies the pathogenesis of osteoporosis from the aspects of oxidative stress, inflammatory response, and glucolipotoxicity-induced injury and clarifies the efficacy and mechanism of some active ingredients of traditional Chinese medicine against osteoporosis through the integration of in vitro and in vivo experiments. The experimental results suggest that some active ingredients can improve bone resorption markers and maintain bone homeostasis by modulating inflammation, oxidative stress, etc. These active ingredients regulate osteoporosis through the receptor activator of nuclear transcription factor-κB (NF-κB) ligand (RANKL) pathway, osteoprotegerin (OPG) pathway, Wnt/β-catenin pathway, NF-κB pathway, mitogen-activated protein kinase (MAPK) pathway, adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and oxidative stress pathway. This review provides ideas for the progress of the prevention and treatment of osteoporosis with the active ingredients of traditional Chinese medicine, aiming to provide new potential lead compounds and reference for the development of innovative drugs and clinical therapy for the treatment of osteoporosis.

Result Analysis
Print
Save
E-mail