1.Effects of Mitoxantrone liposomes on the proliferation,migration and stemness in ovarian cancer cells
Dong WANG ; Yue ZHANG ; Baiwang CHU ; Hua SUN
China Pharmacy 2026;37(1):42-48
OBJECTIVE To investigate the effects of Mitoxantrone liposomes (Lipo-MIT) on the proliferation, migration and cancer stem cell (CSCs) stemness of ovarian cancer cells, as well as to explore its mechanism of action based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. METHODS The effects of Lipo-MIT on cell proliferation, migration and the stemness characteristics of CSCs were investigated through in vitro experiments. A human ovarian cancer A2780 cells xenograft tumor model of nude mouse was established to explore the effects of Lipo-MIT at doses of 2 and 5 mg/kg on the safety of tumor-bearing mice, as well as in vivo tumor growth and the pathological characteristics of tumor tissues. The influence of Lipo-MIT on the expression levels of PI3K/AKT pathway-related proteins, epithelial-mesenchymal transition related proteins, and stemness related proteins in both cells and tumor tissues was also investigated. RESULTS The half maximal inhibitory concentrations of Lipo-MIT against A2780, SK-OV3, and OV-CAR5 cells were 0.72, 5.41, and 2.77 μmol/L, respectively. Compared with solvent control (0.1% dimethyl sulfoxide), 0.5-2.5 μmol/L Lipo-MIT significantly reduced the cell colony formation rate, shortened the cell migration distance, decreased the number of migrated cells, down-regulated the protein expression of N-cadherin, up-regulated the protein expression of E-cadherin (P<0.05), and also decreased the stem cell sphere formation frequency and down-regulated the protein expression of aldehyde dehydrogenase 1A1 (ALDH1A1) (P<0.05). Additionally, 1.0 and 2.5 μmol/L Lipo-MIT significantly reduced the stem cell sphere formation probability and down-regulated the protein expression of sex determining region Y box protein 2 in cells (P<0.05). In vivo experimental results demonstrated that 2, 5 mg/kg Lipo-MIT had no significant effects on the body weight, food intake, water intake, and organ (heart, liver, spleen, lung, and kidney) indices of tumor-bearing nude mice (P>0.05), but could significantly improve the pathological changes of tumor tissues and remarkably inhibit the protein expressions of N-cadherin, CD133 and ALDH1A1( only at 5 mg/kg Lipo-MIT), up-regulate the expression of E- cadherin (only at 5 mg/kg Lipo-MIT) in tumor tissues (P<0.05). Lipo-MIT at different concentrations/doses significantly reduced the phosphorylation levels of PI3K and AKT proteins in cells/tumor tissues (P<0.05). CONCLUSIONS Lipo-MIT can inhibit the proliferation and migration of ovarian cancer cells and the stemness by suppressing the activity of the PI3K/AKT pathway.
2.Natural diosmin alleviating obesity and nonalcoholic fatty liver disease by regulating the activating the AMP-activated protein kinase (AMPK) pathway.
Can LIU ; Siyu HAO ; Mengdi ZHANG ; Xueyu WANG ; Baiwang CHU ; Tingjie WEN ; Ruoyu DANG ; Hua SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):863-870
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are linked to numerous chronic conditions, including cardiovascular disease, atherosclerosis, chronic kidney disease, and type II diabetes. Previous research identified the natural flavonoid diosmin, derived from Chrysanthemum morifolium, as a regulator of glucose metabolism. However, its effects on lipid metabolism and underlying mechanisms remained unexplored. The AMP-activated protein kinase (AMPK) pathway serves a critical function in glucose and lipid metabolism. The relationship between diosmin and the AMPK pathway has not been previously documented. This investigation examined diosmin's capacity to reduce lipid content through AMPK pathway activation in hepatoblastoma cell line G2 (HepG2) and 3T3-L1 cells. The study revealed that diosmin inhibits lipogenesis, indicating its potential as an anti-obesity agent in obese mice. Moreover, diosmin demonstrated effective MASLD alleviation in vivo. These findings suggest that diosmin may represent a promising therapeutic candidate for treating obesity and MASLD.
Diosmin/administration & dosage*
;
Animals
;
AMP-Activated Protein Kinases/genetics*
;
Humans
;
Non-alcoholic Fatty Liver Disease/enzymology*
;
Mice
;
Obesity/enzymology*
;
Hep G2 Cells
;
Male
;
3T3-L1 Cells
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Lipid Metabolism/drug effects*
;
Chrysanthemum/chemistry*
;
Lipogenesis/drug effects*

Result Analysis
Print
Save
E-mail