1.Constructing a model of degenerative scoliosis using finite element method:biomechanical analysis in etiology and treatment
Kai HE ; Wenhua XING ; Shengxiang LIU ; Xianming BAI ; Chen ZHOU ; Xu GAO ; Yu QIAO ; Qiang HE ; Zhiyu GAO ; Zhen GUO ; Aruhan BAO ; Chade LI
Chinese Journal of Tissue Engineering Research 2025;29(3):572-578
BACKGROUND:Degenerative scoliosis is defined as a condition that occurs in adulthood with a coronal cobb angle of the spine>10° accompanied by sagittal deformity and rotational subluxation,which often produces symptoms of spinal cord and nerve compression,such as lumbar pain,lower limb pain,numbness,weakness,and neurogenic claudication.The finite element method is a mechanical analysis technique for computer modelling,which can be used for spinal mechanics research by building digital models that can realistically restore the human spine model and design modifications. OBJECTIVE:To review the application of finite element method in the etiology and treatment of degenerative scoliosis. METHODS:The literature databases CNKI,PubMed,and Web of Science were searched for articles on the application of finite element method in degenerative scoliosis published before October 2023.Search terms were"finite element analysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity"in Chinese and English.Fifty-four papers were finally included. RESULTS AND CONCLUSION:(1)The biomechanical findings from the degenerative scoliosis model constructed using the finite element method were identical to those from the in vivo experimental studies,which proves that the finite element method has a high practical value in degenerative scoliosis.(2)The study of the etiology and treatment of degenerative scoliosis by the finite element method is conducive to the prevention of the occurrence of the scoliosis,slowing down the progress of the scoliosis,the development of a more appropriate treatment plan,the reduction of complications,and the promotion of the patients'surgical operation.(3)The finite element method has gradually evolved from a single bony structure to the inclusion of soft tissues such as muscle ligaments,and the small sample content is increasingly unable to meet the research needs.(4)The finite element method has much room for exploration in degenerative scoliosis.
2.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Imaging
Fang LI ; Bai CHEN ; Yang WU ; Kai LIU ; Tong ZHOU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(7):1866-1877
ObjectiveThis paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD. MethodsA simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients. ResultsSimulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages. ConclusionEIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
3.Deciphering Molecular Mechanisms of Maxing Shigan Tang Against Pneumonia Based on Transcriptomic and Structural Data
Yingdong WANG ; Haoyang PENG ; Aoyi WANG ; Wuxia ZHANG ; Chen BAI ; Peng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):215-222
ObjectiveMaxing Shigan Tang, as a traditional prescription for treating pneumonia, has a remarkable clinical effect. This study aims to systematically investigate the molecular mechanisms of Maxing Shigan Tang in treating pneumonia by integrating its structural and transcriptomic data at the target level. MethodsNP-TCMtarget, a developed systematic network pharmacological model focusing on drug targets, was used to mine the effect targets of Maxing Shigan Tang for treating pneumonia based on the transcriptome data. The structural targets of chemical components in Maxing Shigan Tang were predicted based on the structural information. The intersection of effect targets and structural targets was taken as the direct targets of Maxing Shigan Tang for treating pneumonia, and the remaining effect targets except direct targets were taken as indirect targets. Finally, functional enrichment analysis was performed on these targets to explore the molecular mechanism of Maxing Shigan Tang in treating pneumonia. ResultsA total of 1 604 effect targets and 816 structural targets of Maxing Shigan Tang for treating pneumonia were identified. Maxing Shigan Tang exerted its therapeutic effects through 164 direct targets and 1 440 indirect targets. The functional analysis of 1 604 effect targets predicted 19 significantly enriched pathways. Comprehensive analysis of these pathways showed that these targets were mainly linked to immune and inflammatory responses, such as cytokine-cytokine receptor interaction, necrosis factor (NF)-κB signaling pathway, and helper T cell 17 differentiation. ConclusionFocusing on the hierarchical feature of drug targets and the structural and transcriptomic data, this study systematically reveals the path of herbal component-direct target-indirect target-biological effects of Maxing Shigan Tang in treating pneumonia.
4.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
5.Deciphering Molecular Mechanisms of Maxing Shigan Tang Against Pneumonia Based on Transcriptomic and Structural Data
Yingdong WANG ; Haoyang PENG ; Aoyi WANG ; Wuxia ZHANG ; Chen BAI ; Peng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):215-222
ObjectiveMaxing Shigan Tang, as a traditional prescription for treating pneumonia, has a remarkable clinical effect. This study aims to systematically investigate the molecular mechanisms of Maxing Shigan Tang in treating pneumonia by integrating its structural and transcriptomic data at the target level. MethodsNP-TCMtarget, a developed systematic network pharmacological model focusing on drug targets, was used to mine the effect targets of Maxing Shigan Tang for treating pneumonia based on the transcriptome data. The structural targets of chemical components in Maxing Shigan Tang were predicted based on the structural information. The intersection of effect targets and structural targets was taken as the direct targets of Maxing Shigan Tang for treating pneumonia, and the remaining effect targets except direct targets were taken as indirect targets. Finally, functional enrichment analysis was performed on these targets to explore the molecular mechanism of Maxing Shigan Tang in treating pneumonia. ResultsA total of 1 604 effect targets and 816 structural targets of Maxing Shigan Tang for treating pneumonia were identified. Maxing Shigan Tang exerted its therapeutic effects through 164 direct targets and 1 440 indirect targets. The functional analysis of 1 604 effect targets predicted 19 significantly enriched pathways. Comprehensive analysis of these pathways showed that these targets were mainly linked to immune and inflammatory responses, such as cytokine-cytokine receptor interaction, necrosis factor (NF)-κB signaling pathway, and helper T cell 17 differentiation. ConclusionFocusing on the hierarchical feature of drug targets and the structural and transcriptomic data, this study systematically reveals the path of herbal component-direct target-indirect target-biological effects of Maxing Shigan Tang in treating pneumonia.
6.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
7.Multivariate quantitative combined with chemometrics for evaluating the quality of Sophora flavescens from different producing areas
Jiahui CHEN ; Qiong LUO ; Junli ZHAO ; Yan HAI ; Chengdong LIU ; Tuya BAI ; Jun LI ; Yuewu WANG
China Pharmacy 2025;36(19):2404-2408
OBJECTIVE To establish a content determination method for multiple components in Sophora flavescens from different origins and to evaluate its quality by combining with chemometrics. METHODS Thirteen batches (No. K1-K13) of S. flavescens from different origins were selected as test samples. A high-performance liquid chromatography-tandem triple quadrupole mass spectrometry (HPLC-MS/MS) method was established to determine the contents of 12 components, including matrine, oxymatrine, betaine, cytisine, N-methylcytisine, sophoridine, genistein, sophoricoside, sophorone, formononetin, sophorolone Ⅰ and norkurarinone in S. flavescens. Chromatographic separation was performed on a Shim-pack GIST-HP C18 column with a mobile phase consisting of methanol (A) and water containing 0.1% formic acid (B), using gradient elution at a flow rate of 0.25 mL/min, column temperature of 35 ℃, and an injection volume of 3 μL. Mass spectrometry was conducted using an electrospray ionization source with positive and negative ion scanning. Data were collected in segments using the multiple reaction monitoring mode. Technique for order preference by similarity to ideal solution (TOPSIS) and grey relational analysis (GRA)methods were employed to compare and comprehensively evaluate the 13 batches of S. flavescens from different origins. RESULTS The methodological validation for the content determination met the relevant regulatory requirements. The contents of the 12 components were 490.66-1 231.00, 11 088.10- 18 021.50, 7.91-25.38, 903.97-1 713.64, 336.08-1 485.54,1 065.33-2 075.50, 27.52-71.80, 109.36-517.83, 6 034.55-10 632.73, 21.26-145.35, 814.84-1 911.32, 1 040.87-3 446.37 μg/g), respectively. TOPSIS results showed that the top 7 samples in Euclidean distance ranking were K6, K12, K11, K3, K5, K10, K13. The GRA results showed that the top 7 samples in the relative correlation ranking were K12, K11, K10, K6, K13, K5, K3. CONCLUSIONS The established HPLC-MS/MS method is rapid, accurate, highly sensitive, stable and reliable. Combined with chemometrics methods, it can be used for the quality control and evaluation of S. flavescens. The comprehensive quality of samples K3, K5, K6( from Hebei), K10( from Sichuan), K11-K13( from Shanxi), etc. is relatively superior.
8.Multiparametric MRI to Predict Gleason Score Upgrading and Downgrading at Radical Prostatectomy Compared to Presurgical Biopsy
Jiahui ZHANG ; Lili XU ; Gumuyang ZHANG ; Daming ZHANG ; Xiaoxiao ZHANG ; Xin BAI ; Li CHEN ; Qianyu PENG ; Zhengyu JIN ; Hao SUN
Korean Journal of Radiology 2025;26(5):422-434
Objective:
This study investigated the value of multiparametric MRI (mpMRI) in predicting Gleason score (GS) upgrading and downgrading in radical prostatectomy (RP) compared with presurgical biopsy.
Materials and Methods:
Clinical and mpMRI data were retrospectively collected from 219 patients with prostate disease between January 2015 and December 2021. All patients underwent systematic prostate biopsy followed by RP. MpMRI included conventional diffusion-weighted and dynamic contrast-enhanced imaging. Multivariable logistic regression analysis was performed to analyze the factors associated with GS upgrading and downgrading after RP. Receiver operating characteristic curve analysis was used to estimate the area under the curve (AUC) to indicate the performance of the multivariable logistic regression models in predicting GS upgrade and downgrade after RP.
Results:
The GS after RP was upgraded, downgraded, and unchanged in 92, 43, and 84 patients, respectively. The AUCs of the clinical (percentage of positive biopsy cores [PBCs], time from biopsy to RP) and mpMRI models (prostate cancer [PCa] location, Prostate Imaging Reporting and Data System [PI-RADS] v2.1 score) for predicting GS upgrading after RP were 0.714 and 0.749, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, tPSA, PCa location, and PIRADS v2.1 score) was 0.816, which was larger than that of the clinical factors alone (P < 0.001). The AUCs of the clinical (age, percentage of PBCs, ratio of free/total PSA [F/T]) and mpMRI models (PCa diameter, PCa location, and PI-RADS v2.1 score) for predicting GS downgrading after RP were 0.749 and 0.835, respectively. The AUC of the combined diagnostic model (age, percentage of PBCs, F/T, PCa diameter, PCa location, and PI-RADS v2.1 score) was 0.883, which was larger than that of the clinical factors alone (P < 0.001).
Conclusion
Combining clinical factors and mpMRI findings can predict GS upgrade and downgrade after RP more accurately than using clinical factors alone.
9.Molecular Characteristics of Prognosis and Chemotherapy Response in Breast Cancer: Biomarker Identification Based on Gene Mutations and Pathway
Liyan LI ; Hongwei LYU ; Qian CHEN ; Yating BAI ; Jing YU ; Ruigang CAI
Journal of Breast Cancer 2025;28(2):61-71
Purpose:
This study aimed to investigate the molecular characteristics associated with better prognosis in breast cancer.
Methods:
We performed targeted sequencing of 962 genes in 56 samples, categorizing them into long-term and short-term survival groups as well as chemotherapy-sensitive and chemotherapy-resistant groups for further analyses.
Results:
The results indicated that the tumor mutational burden values were significantly higher in the short-term survival and chemotherapy-resistant groups (p = 0.008 and p = 0.003, respectively). Somatic mutation analysis revealed that the mutation frequencies of BCL9L and WHSC1 were significantly lower in the long-term survival group than those in the short-term survival group (p = 0.029 and p = 0.024, respectively). CREB-regulated transcription coactivator 1 (CRTC1) mutations occurred significantly more frequently in the chemotherapy-resistant group (p = 0.027) and were associated with shorter progression-free survival (p = 0.036).Signature weighting analysis showed a significant increase in Signature.3, which is associated with homologous recombination repair deficiency in the chemotherapy-sensitive group (p = 0.045). Conversely, signatures related to effective DNA repair mechanisms, Signature.1 and Signature.15, were significantly reduced (p = 0.002 and p < 0.001, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that gene mutations were significantly enriched in the JAK-STAT signaling pathway.
Conclusion
This study, through intergroup comparative analysis, found that immunotherapy (using programmed death 1/programmed death-ligand 1 inhibitors) may improve the prognosis of patients with short survival and chemotherapy resistance. Additionally, the study revealed that mutations in BCL9L and WHSC1 could serve as biomarkers for breast cancer prognosis, while CRTC1 mutations and Signature.3 could predict chemotherapy response. The study also found that the JAK-STAT pathway might be a potential therapeutic target for chemotherapy resistance. Therefore, this study identifies molecular characteristics that influence the prognosis of breast cancer patients, providing important theoretical insights for the development of personalized treatment strategies.
10.Molecular Characteristics of Prognosis and Chemotherapy Response in Breast Cancer: Biomarker Identification Based on Gene Mutations and Pathway
Liyan LI ; Hongwei LYU ; Qian CHEN ; Yating BAI ; Jing YU ; Ruigang CAI
Journal of Breast Cancer 2025;28(2):61-71
Purpose:
This study aimed to investigate the molecular characteristics associated with better prognosis in breast cancer.
Methods:
We performed targeted sequencing of 962 genes in 56 samples, categorizing them into long-term and short-term survival groups as well as chemotherapy-sensitive and chemotherapy-resistant groups for further analyses.
Results:
The results indicated that the tumor mutational burden values were significantly higher in the short-term survival and chemotherapy-resistant groups (p = 0.008 and p = 0.003, respectively). Somatic mutation analysis revealed that the mutation frequencies of BCL9L and WHSC1 were significantly lower in the long-term survival group than those in the short-term survival group (p = 0.029 and p = 0.024, respectively). CREB-regulated transcription coactivator 1 (CRTC1) mutations occurred significantly more frequently in the chemotherapy-resistant group (p = 0.027) and were associated with shorter progression-free survival (p = 0.036).Signature weighting analysis showed a significant increase in Signature.3, which is associated with homologous recombination repair deficiency in the chemotherapy-sensitive group (p = 0.045). Conversely, signatures related to effective DNA repair mechanisms, Signature.1 and Signature.15, were significantly reduced (p = 0.002 and p < 0.001, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that gene mutations were significantly enriched in the JAK-STAT signaling pathway.
Conclusion
This study, through intergroup comparative analysis, found that immunotherapy (using programmed death 1/programmed death-ligand 1 inhibitors) may improve the prognosis of patients with short survival and chemotherapy resistance. Additionally, the study revealed that mutations in BCL9L and WHSC1 could serve as biomarkers for breast cancer prognosis, while CRTC1 mutations and Signature.3 could predict chemotherapy response. The study also found that the JAK-STAT pathway might be a potential therapeutic target for chemotherapy resistance. Therefore, this study identifies molecular characteristics that influence the prognosis of breast cancer patients, providing important theoretical insights for the development of personalized treatment strategies.

Result Analysis
Print
Save
E-mail