1.High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome.
Yifei SHEN ; Qinghong QIAN ; Liguo DING ; Wenxin QU ; Tianyu ZHANG ; Mengdi SONG ; Yingjuan HUANG ; Mengting WANG ; Ziye XU ; Jiaye CHEN ; Ling DONG ; Hongyu CHEN ; Enhui SHEN ; Shufa ZHENG ; Yu CHEN ; Jiong LIU ; Longjiang FAN ; Yongcheng WANG
Protein & Cell 2025;16(3):211-226
Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Bacteriophages/physiology*
;
High-Throughput Nucleotide Sequencing
;
Sequence Analysis, RNA/methods*
;
Bacteria/virology*
2.Advances in phage immunoprecipitation sequencing technology.
Yuhao ZHU ; Wenlong ZHU ; Yujie LAI ; Mengjia ZHANG ; Wentao LI
Chinese Journal of Biotechnology 2025;41(8):2987-3007
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput and low-cost method for analyzing the specific binding of target proteins to peptide libraries. The method uses oligonucleotide library synthesis (OLS) to encode proteome-scale peptide libraries for display on phages, and then immunoprecipitates these library phages with target proteins (such as antibodies) for subsequent analysis by high-throughput DNA sequencing. PhIP-Seq enables the screening of peptide targets that react specifically with hundreds of proteins or pathogens. PhIP-Seq has been successfully applied in various fields such as disease detection, screening of autoimmune disease biomarkers, vaccine development, and allergen detection, becoming a high-throughput diagnostic technology. This article systematically describes the development, applications, and result evaluation of PhIP-Seq, in order to gain a more comprehensive understanding of the application and future development prospects of this technology in various fields.
Peptide Library
;
Humans
;
Immunoprecipitation/methods*
;
High-Throughput Nucleotide Sequencing/methods*
;
Bacteriophages/genetics*
3.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
4.Phage antibody library technology in tumor therapy: a review.
Xiaoyang CHEN ; Ruiheng AN ; Ju HUANG ; Youfeng LIANG ; Wenjing ZHANG ; Mingxuan HAO ; Rui GUO ; Xiaoning LI ; Yongchao LI ; Lu YING ; Zhao YANG
Chinese Journal of Biotechnology 2023;39(9):3644-3669
Tumor is a serious threat to human health. At present, surgical resection, chemoradiotherapy, targeted therapy and immunotherapy are the main therapeutic strategies. Monoclonal antibody has gradually become an indispensable drug type in the clinical treatment of cancer due to its high efficiency and low toxicity. Phage antibody library technology (PALT) is a novel monoclonal antibody preparation technique. The recombinant immunoglobulin variable region of heavy chain (VH)/variable region of light chain (VL) gene is integrated into the phage vector, and the antibody is expressed on the phage surface in the form of fusion protein to obtain a diverse antibody library. Through the process of adsorption-elution-amplification, the antibody library can be screened to obtain the antibody molecule with specific binding antigen as well as its gene sequence. PALT has the advantages of short antibody production cycle, strong plasticity of antibody structure, large antibody yield, high diversity and direct production of humanized antibodies. It has been used in screening tumor markers and preparation of antibody drugs for breast cancer, gastric cancer, lung cancer and liver cancer. This article reviews the recent progress and the application of PALT in tumor therapy.
Humans
;
Bacteriophages/genetics*
;
Immunoglobulin Variable Region/genetics*
;
Gene Library
;
Antibodies, Monoclonal/therapeutic use*
;
Immunotherapy
;
Peptide Library
5.Prevention and control of antimicrobial resistance using CRISPR-Cas system: a review.
Chenyu WANG ; Zhizhi LIU ; Biao TANG ; Hua YANG ; Dongchang SUN
Chinese Journal of Biotechnology 2022;38(4):1432-1445
Bacterial multi-drug resistance (MDR) is a global challenge in the fields of medicine and health, agriculture and fishery, ecology and environment. The cross-region spread of antibiotic resistance genes (ARGs) among different species is one of the main cause of bacterial MDR. However, there is no effective strategies for addressing the intensifying bacterial MDR. The CRISPR-Cas system, consisting of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins, can targetedly degrade exogenous nucleic acids, thus exhibiting high application potential in preventing and controlling bacterial MDR caused by ARGs. This review briefly introduced the working mechanism of CRISPR-Cas systems, followed by discussing recent advances in reducing ARGs by CRISPR-Cas systems delivered through mediators (e.g. plasmids, bacteriophages and nanoparticle). Moreover, the trends of this research field were envisioned, providing a new perspective on preventing and controlling MDR.
Anti-Bacterial Agents
;
Bacteriophages/genetics*
;
CRISPR-Cas Systems
;
Drug Resistance, Bacterial/genetics*
;
Plasmids/genetics*
6.The role of bacterial toxin-antitoxin systems in phage abortive infections.
Yang HAI ; Xiaoyu WANG ; Jianping XIE
Chinese Journal of Biotechnology 2022;38(9):3291-3300
Bacteria are often infected by large numbers of phages, and host bacteria have evolved diverse molecular strategies in the race with phages, with abortive infection (Abi) being one of them. The toxin-antitoxin system (TA) is expressed in response to bacterial stress, mediating hypometabolism and even dormancy, as well as directly reducing the formation of offspring phages. In addition, some of the toxins' sequences and structures are highly homologous to Cas, and phages even encode antitoxin analogs to block the activity of the corresponding toxins. This suggests that the failure of phage infection due to bacterial death in abortive infections is highly compatible with TA function, whereas TA may be one of the main resistance and defense forces for phage infestation of the host. This review summarized the TA systems involved in phage abortive infections based on classification and function. Moreover, TA systems with abortive functions and future use in antibiotic development and disease treatment were predicted. This will facilitate the understanding of bacterial-phage interactions as well as phage therapy and related synthetic biology research.
Anti-Bacterial Agents
;
Antitoxins/chemistry*
;
Bacteria/genetics*
;
Bacterial Proteins/chemistry*
;
Bacterial Toxins/genetics*
;
Bacteriophages/genetics*
;
Toxin-Antitoxin Systems/genetics*
7.Analysis of genomic information and biological characteristics of a bacteriophage against methicillin-resistant Staphylococcus aureus in patients with median sternal incision infection.
Jian ZHANG ; Rong Shuai YAN ; Zi Chen YANG ; Xi SHI ; Xiang LI ; Tong Chun MAO ; Yi Ming ZHANG
Chinese Journal of Burns 2022;38(2):137-146
Objective: To isolate and purify a bacteriophage against methicillin-resistant Staphylococcus aureus (MRSA), and to analyze its genomic information and biological characteristics. Methods: The experimental research methods were adopted. MRSA (hereinafter referred to as host bacteria) solution was collected from the wound of a 63-year-old female patient with the median sternum incision infection admitted to the Second Affiliated Hospital of Army Medical University (the Third Military Medical University). The bacteriophage, named bacteriophage SAP23 was isolated and purified from the sewage of the Hospital by sewage co-culture method and double-layer agar plate method, and the plaque morphology was observed. The morphology of bacteriophage SAP23 was observed by transmission electron microscope after phosphotungstic acid negative staining. The whole genome of bacteriophage SAP23 was sequenced with NovaSeq PE15 platform after its DNA was prepared by sodium dodecyl sulfonate/protease cleavage scheme, and genomic analysis including sequence assembly, annotation, and phylogenetic tree were completed. The bacteriophage SAP23 solution was co-incubated with the host bacterial solution for 4 h at the multiplicity of infection (MOI) of 10.000 0, 1.000 0, 0.100 0, 0.010 0, 0.001 0, and 0.000 1, respectively, and then the bacteriophage titer was measured by the drip plate method to select the optimal MOI, with here and the following sample numbers of 3. The bacteriophage SAP23 solution was co-incubated with the host bacterial solution at the optimal MOI for 5, 10, and 15 min, respectively, and the bacteriophage titer was measured by the same method as mentioned above to select the optimal adsorption time. After the bacteriophage SAP23 solution was co-incubated with the host bacterial solution at the optimal MOI for the optimal adsorption time, the bacteriophage titers were measured by the same method as mentioned above at 0 (immediately), 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, and 120 min after culture, respectively, and a one-step growth curve was drawn. The bacteriophage SAP23 solution was incubated at 4, 37, 50, 60, 70, and 80 ℃ and pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 for 1 h, respectively, to determine its stability. A total of 41 MRSA strains stored in the Department of Microbiology of Army Medical University (the Third Military Medical University) were used to determine the host spectrum of bacteriophage SAP23. Results: The bacteriophage SAP23 could form a transparent plaque on the host bacteria double-layer agar plate. The bacteriophage SAP23 has a polyhedral head with (88±4) nm in diameter and a tail with (279±21) nm in length and (22.6±2.6) nm in width. The bacteriophage SAP23 has a linear, double-stranded DNA with a full length of 151 618 bp and 11 681 bp long terminal repeats sequence in the sequence ends. There were 220 open reading frames predicted and the bacteriophage could encode 4 transfer RNAs, while no resistance genes or virulence factors were found. The annotation function of bacteriophage SAP23 genes could be divided into 5 groups. The GenBank accession number was MZ427930. According to the genomic collinearity analysis, there were 5 local collinear blocks in the whole genome between the bacteriophage SAP23 and the chosen 6 Staphylococcus bacteriophages, while within or outside the local collinear region, there were still some differences. The bacteriophage SAP23 belonged to the Herelleviridae family, Twortvirinae subfamily, and Kayvirus genus. The optimal MOI of bacteriophage SAP23 was 0.010 0, and the optimal adsorption time was 10 min. The bacteriophage SAP23 had a latent period of 20 min, and a growth phase of 80 min. The bacteriophage SAP23 was able to remain stable at the temperature between 4 and 37 ℃ and at the pH values between 4 and 9. The bacteriophage SAP23 could lyse 3 of the 41 tested MRSA strains. Conclusions: The bacteriophage SAP23 is a member of the Herelleviridae family, Twortvirinae subfamily, and Kayvirus genus. The bacteriophage SAP23 has a good tolerance for temperature and acid-base and a short latent period, and can lyse MRSA effectively. The bacteriophage SAP23 is a new type of potent narrow-spectrum bacteriophage without virulence factors and resistance genes.
Bacteriophages/genetics*
;
Genomics
;
Humans
;
Methicillin-Resistant Staphylococcus aureus/genetics*
;
Middle Aged
;
Phylogeny
;
Sternum
8.Application of CRISPR in evolution analysis, detecting and typing, virulence and antibiotic resistance regulation in food-borne pathogens.
Zhiye BAI ; Wen WANG ; Xiaofeng JI ; Yingping XIAO ; Shiqin ZHANG ; Zichen WANG ; Hongmei LI ; Qingli DONG
Chinese Journal of Biotechnology 2021;37(7):2414-2424
Clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein gene system can limit the horizontal gene transfer, thereby effectively preventing the invasion of foreign gene elements such as bacteriophages. CRISPR arrays of different bacteria are diverse. Based on the differences in the CRISPR system, this review summarizes the application of CRISPR in food-borne pathogen evolution analysis, detection and typing, virulence and antibiotic resistance in recent years. We also address bacterial detection typing method developed based on the characteristics of CRISPR arrays and the association of CRISPR with virulence and drug resistance of food-borne pathogens. The shortcomings of CRISPR in evolution, detection and typing, virulence and resistance applications are analyzed. In addition, we suggest standardizing CRISPR typing methods, improving and expanding the CRISPR database of pathogenic bacteria, and further exploring the co-evolution relationship between phages and bacteria, to provide references for further exploration of CRISPR functions.
Bacteria/genetics*
;
Bacteriophages/genetics*
;
CRISPR-Cas Systems/genetics*
;
Clustered Regularly Interspaced Short Palindromic Repeats/genetics*
;
Drug Resistance, Microbial/genetics*
;
Virulence/genetics*
9.Advances of phage receptor binding proteins.
Jiahui SUN ; Peiling GENG ; Xiaofu WAN ; Zhiming YUAN ; Hairong XIONG ; Xiaomin HU
Chinese Journal of Biotechnology 2021;37(8):2614-2622
Bacteriophages bind to the bacteria receptor through the receptor binding proteins (RBPs), a process that requires the involvement of complex atomic structures and conformational changes. In response to bacteriophage infection, bacteria have developed a variety of resistance mechanisms, while bacteriophages have also evolved multiple antagonistic mechanisms to escape host resistance. The exploration of the "adsorption-anti adsorption-escape process" between bacteriophages and bacteria helps us better understand the co-evolution process of bacteriophages and bacteria, which is important for the development of phage therapeutic technologies and phage-based biotechnologies. This review summarizes the bacteriophage adsorption related proteins, how bacteriophages escape host resistance based on the RBP alternations, and the recent progress of RBP-related biotechnologies.
Bacteria
;
Bacteriophage Receptors
;
Bacteriophages/genetics*
;
Carrier Proteins
;
Protein Binding
10.Development of a luminescence real-time method for monitoring live bacteria during phage lysis.
Fenxia FAN ; Xu LI ; Biao KAN
Chinese Journal of Biotechnology 2021;37(4):1406-1414
The toxin-producing bacterium Vibrio cholerae can cause severe diarrhea and has caused seven global pandemics. Traditional viable cell counts and phage plaques are commonly used to evaluate the efficacy of virulent phage clearance of V. cholerae, but these operations are time-consuming and labor-intensive, and difficult to provide real-time changes. It is desirable to develop a simple and real-time method to monitor V. cholerae during phage lysis. In this study, a luminescence-generating plasmid pBBR-pmdh-luxCDABE was transformed into three O1 serogroup drug-resistant strains of V. cholerae. The results showed that the luminescence value as a monitoring index correlates well with the traditional viable cell count method. Monitoring the number of live cells of V. cholerae by measuring the luminescence allowed real-time analysis of the number of bacteria remaining during phage lysis. This method enables repeated, interference-free, continuous multiple-time-point detection of the same sample without the time delay of re-culture or plaque formation, facilitating real-time monitoring and analysis of the interaction between the phage and the host bacteria.
Bacteriophages/genetics*
;
Luminescence
;
Plasmids
;
Vibrio cholerae

Result Analysis
Print
Save
E-mail