1.An efficient assembly method for a viral genome based on T7 endonuclease Ⅰ-mediated error correction.
Xuwei ZHANG ; Bin WEN ; Fei WANG ; Xuejun WANG ; Liyan LIU ; Shumei WANG ; Shengqi WANG
Chinese Journal of Biotechnology 2025;41(1):385-396
Gene synthesis is an enabling technology that supports the development of synthetic biology. The existing approaches for de novo gene synthesis generally have tedious operation, low efficiency, high error rates, and limited product lengths, being difficult to support the huge demand of synthetic biology. The assembly and error correction are the keys in gene synthesis. This study first designed the oligonucleotide sequences by reasonably splitting the virus genome of approximately 10 kb by balancing the parameters of sequence design software ability, PCR amplification ability, and assembly enzyme assembly ability. Then, two-step PCR was performed with high-fidelity polymerase to complete the de novo synthesis of 3.0 kb DNA fragments, and error correction reactions were performed with T7 endonuclease Ⅰ for the products from different stages of PCR. Finally, the virus genome was assembled by 3.0 kb DNA fragments from de novo synthesis and error correction and then sequenced. The experimental results showed that the proposed method successfully produced the DNA fragment of about 10 kb and reduced the probability of large fragment mutations during the assembly process, with the lowest error rate reaching 0.36 errors/kb. In summary, this study developed an efficient de novo method for synthesizing a viral genome of about 10 kb with T7 endonuclease Ⅰ-mediated error correction. This method enabled the synthesis of a 10 kb viral genome in one day and the correct plasmid of the viral genome in five days. This study optimized the de novo gene synthesis process, reduced the error rate, simplified the synthesis and assembly steps, and reduced the cost of viral genome assembly.
Genome, Viral/genetics*
;
Polymerase Chain Reaction/methods*
;
DNA, Viral/genetics*
;
Bacteriophage T7/enzymology*
;
Synthetic Biology/methods*
2.Homologous expression of Burkholderia cepacia G63 lipase gene based on T7 RNA polymerase expression system.
Bin JIA ; Jiangke YANG ; Yunjun YAN
Chinese Journal of Biotechnology 2009;25(2):215-222
In order to realize over-expression of Burkholderia cepacia (B. cepacia) lipase, we introduced the widely used T7 RAN polymerase expression system into B. cepacia G63 to over-express the lipase gene. By using PCR technique, we amplified the T7 RNA polymerase gene (T7 RNAP) from the BL21 (DE3) and cloned it into the suicide plasmid pJQ200SK. After that, we flanked T7 RNAP with two 500 bp homologous fragments and integrated it into the genomes of B. cepacia by tri-parental mating, so that T7 RNAP was under-controlled by lipase gene (lipA) promoter. Then, we cloned the lipA and its partner gene lipB into the vector pUCPCM and pBBR22b both or separately. Therefore, we got 7 expression plasmids pBBR22blipAB, pBBR22blipA, pUCPCMlipAB, pUCPCMlipA, pUCPCMdeltalipAlipB, pUCPCMdeltalipA, pUCPCMdeltalipB, and then electroporated them into B. cepacia containing T7 RNA. After shake flask culture, we found B. cepacia containing pUCPCMlipAB produced the most quantity of lipase, and lipase activity was up to 607.2 U/mg, 2.8-folds higher than that of the wild strain. Moreover, lipase activities of all engineering strains except the one containing pUCPCMdeltalipB were enhanced to some extent. The specific activities of wild type B. cepacia and B. cepacia containing pUCPCMlipAB were respectively 29 984 U/mg and 30 875 U/mg after ammonium sulfate precipitation and gel filtration chromatography. The T7 RNA polymerase expression system could effectively enhanced lipase expression in B. cepacia, and secretion signal PelB and ribosome-binding site may promote lipase expression in engineering strain.
Bacteriophage T7
;
genetics
;
Burkholderia cepacia
;
enzymology
;
genetics
;
Cloning, Molecular
;
DNA-Directed RNA Polymerases
;
genetics
;
Escherichia coli
;
enzymology
;
genetics
;
Lipase
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Transformation, Genetic
;
Viral Proteins
;
genetics
3.Eukaryonization of T7 RNA polymerase prokaryotic expression system and development of its couple expression system.
Hai-Xue ZHENG ; Ye JIN ; Shuang-Hui YIN ; Hui-Chen GUO ; You-Jun SHANG ; Xing-Wen BAI ; Xiang-Tao LIU ; Qing-Ge XIE
Chinese Journal of Biotechnology 2007;23(5):947-952
To make transcription of the target gene be driven by T7 RNA polymerase (T7 RNAP) in the eukaryotic cells, and the transcripts be CAP-independent translated. Firstly, the T7 RNAP was introduced into eukaryotic cells by two methods: (1) the BHK-21 cells were contransfected by the plasmid expressing T7 RNAP and pIERS-EGFP-ET vector; (2) by transfection of the cell line stably expressing T7 RNAP. The internal ribosome entry site (IRES) element from FMDV was cloned into the downstream of the T7 promoter sequence of the prokaryotic expressing vector pET-40a-c (+), resulted in the plasmid would express the transcripts carrying the IERS element at its 5' end. The enhanced green fluorescent protein (EGFP) gene was cloned into the downstream of the IERS element, resulted in plasmid pIERS-EGFP-ET. Then, the two kinds of cells expressing T7 RANP were transfected by pIERS-EGFP-ET. The green fluorescence in the transfected cells was observed under a fluorescence microscope equipped with a video documentation system. And the expressional efficiency was analyzed with flow cytometry (FCM). The results show that the IRES element from FMDV has the role of initiating CAP-independent translation, and lay foundation for researching function of the element and interrelated proteins. It would be potential for expressing target gene by the T7 RNAP couple expression system.
Bacteriophage T7
;
enzymology
;
genetics
;
Cloning, Molecular
;
DNA-Directed RNA Polymerases
;
biosynthesis
;
genetics
;
Foot-and-Mouth Disease Virus
;
genetics
;
Genes, Viral
;
Genetic Vectors
;
Green Fluorescent Proteins
;
genetics
;
Transfection
;
Viral Proteins
;
biosynthesis
;
genetics

Result Analysis
Print
Save
E-mail