1.Clostridium perfringens Beta1 toxin induces macrophage pyroptosis and ferroptosis through the purinergic receptor P2X7-Ca2+ axis.
Siyu ZHANG ; Linwu RAN ; Jin ZENG ; Yujiong WANG
Journal of Southern Medical University 2025;45(10):2126-2134
OBJECTIVES:
To explore the toxic mechanism of Clostridium perfringens Beta1 toxin mediated by P2X7 receptor-induced calcium dyshomeostasis.
METHODS:
Ten-day-old BALB/c mice were randomly divided into control group, recombinant Beta1 toxin (rCPB1) group, PD151746 group, and PD151746+rCPB1 group, and all the treatment agents were administered by gavage. The changes in expressions of inflammatory factors in the jejunum of the mice were detected using antibody chip technology to explore the regulatory role of calcium dyshomeostasis in Beta1 toxin-induced inflammatory injury level. In the cell experiment, THP-1 cells were transfected with a si-RNA targeting P2X7 receptor and treated with rCPB1, and the changes in cell survival rate, levels of Ca2+, ROS and ATP, and expressions of pyroptosis and ferroptosis markers were determined.
RESULTS:
Oral administration of rCPB1 significantly increased the levels of inflammatory cytokines in the jejunal tissue of the neonatal mice, but their levels were significantly decreased after treatment with PD151746. In THP-1 cells, rCPB1 treatment significantly decreased cell survival and increased the levels of Ca2+, ROS, ATP and the expressions of pyroptosis and ferroptosis markers, and these changes were obviously attenuated by P2X7 receptor knockdown.
CONCLUSIONS
P2X7 receptor-mediated functional pore formation by Beta1 toxin can further lead to calcium dyshomeostasis, thereby triggering excessive accumulation of ROS to subsequently induce the co-occurrence of pyroptosis and ferroptosis.
Animals
;
Pyroptosis/drug effects*
;
Receptors, Purinergic P2X7/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
Ferroptosis/drug effects*
;
Humans
;
Calcium/metabolism*
;
Macrophages/drug effects*
;
Bacterial Toxins/toxicity*
2.Protective effect of Streptococcus salivarius K12 against Mycoplasma pneumoniae infection in mice.
Xiaoling SU ; Daoyong LIAO ; Chao LI ; Li CHEN ; Jingyun WANG ; Tian GAN ; Haodang LUO ; Ning WU ; Jun HE
Journal of Southern Medical University 2024;44(12):2300-2307
OBJECTIVES:
To investigate the protective effect of the probiotic bacterium Streptococcus salivarius K12 (K12) against Mycoplasma pneumoniae (Mp) infection in mice.
METHODS:
Forty male BALB/c mice were randomized into normal control group, K12 treatment group, Mp infection group, and K12 pretreatment prior to Mp infection group. The probiotic K12 was administered daily by gavage for 14 days before Mp infection induced by intranasal instillation of Mp. Three days after Mp infection, the mice were euthanized for analysis of bronchoalveolar lavage fluid (BALF) cell counts and serum levels of secretory immunoglobulin A (sIgA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). RT-qPCR was performed to detect the P1 and community-acquired respiratory distress syndrome ( CARDS ) toxin of Mp in the lung tissues and the mRNA expressions of TNF-α, IL-6, chemokine 1 (CXCL1), matrix metalloproteinase 9 (MMP9), mucin 5ac (MUC5ac), collagen 3a1 (Col3a1), Toll-like receptor 2 (TLR2) and TLR4; the protein expressions of TLR2 and TLR4 in the lung tissue were detected using Western blotting. Pathological changes in the lung tissue and airway remodeling were examined with HE staining and AB/PAS staining.
RESULTS:
Compared with the Mp-infected mice with PBS treatment, the infected mice with K12 treatment showed significantly lowered mRNA levels of P1 and CARDS in the lung tissue and reduced white blood cell counts in the BALF (P<0.05). In spite of the absence of significant differences in serum levels of inflammatory factors between the two groups, the mRNA expressions of TNF‑α, IL-6, CXCL1, MMP9, MUC5ac and COL3A1 and the mRNA and protein levels of TLR2 and TLR4 in the lung tissues were significantly lower in K12-treated mice, in which AB/PAS staining showed obviously decreased mucus secretion.
CONCLUSIONS
K12 pretreatment can effectively reduce pulmonary inflammatory responses, improve airway remodeling and alleviate lung injury in Mp-infected mice.
Animals
;
Mice
;
Pneumonia, Mycoplasma/metabolism*
;
Mice, Inbred BALB C
;
Toll-Like Receptor 2/metabolism*
;
Mycoplasma pneumoniae
;
Male
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Lung/microbiology*
;
Toll-Like Receptor 4/metabolism*
;
Streptococcus salivarius
;
Probiotics/administration & dosage*
;
Bronchoalveolar Lavage Fluid
;
Matrix Metalloproteinase 9/metabolism*
;
Mucin 5AC/metabolism*
;
Chemokine CXCL1/metabolism*
;
Immunoglobulin A, Secretory/metabolism*
;
Bacterial Toxins
;
Bacterial Proteins
3.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
4.Transcriptomic analysis of the ΔPaLoc mutant of Clostridioides difficile and verification of its toxicity.
Gu Zhen CUI ; Qing Shuai ZHOU ; Qin Quan CHENG ; Feng Qin RAO ; Yu Mei CHENG ; Yan TIAN ; Ting ZHANG ; Zheng Hong CHEN ; Jian LIAO ; Zhi Zhong GUAN ; Xiao Lan QI ; Qi WU ; Wei HONG
Chinese Journal of Preventive Medicine 2022;56(5):601-608
Objective: Comparative analyses of wild-type Clostridioides difficile 630 (Cd630) strain and pathogenicity locus (PaLoc) knockout mutant (ΔPaLoc) by using RNA-seq technology. Analysis of differential expression of Cd630 wild-type strain and ΔPaLoc mutant strain and measurement of its cellular virulence changes. Lay the foundation for the construction of an toxin-attenuated vaccine strain against Clostridioides difficile. Methods: Analysis of Cd630 and ΔPaLoc mutant strains using high-throughput sequencing (RNA-seq). Clustering differentially expressed genes and screening differentially expressed genes by DESeq software. Further analysis of differential genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, cytotoxicity assays of ΔPaLoc and Cd630 strains were performed in the African monkey kidney epithelial cell (Vero) and the human colonic cell (Caco-2) lines. Results: The transcriptome data showed that the ΔPaLoc mutant toxin genes tcdA and tcdB were not transcribed. Compared to the wild-type strain, CD630_36010, CD630_020910,CD630_02080 and cel genes upregulated 17.92,11.40,8.93 and 7.55 fold, respectively. Whereas the hom2 (high serine dehydrogenase), the CD630_15810 (spore-forming protein), CD630_23230 (zinc-binding dehydrogenase) and CD630_23240 (galactitol 1-phosphate 5-dehydrogenase) genes were down-regulated by 0.06, 0.075, 0.133 and 0.183 fold, respectively. The GO and KEGG enrichment analyses showed that the differentially transcribed genes in ΔPaLoc were enriched in the density-sensing system, ABC transport system, two-component system, phosphotransferase (PTS) system, and sugar metabolism pathway, as well as vancomycin resistance-related pathways. Cytotoxicity assays showed that the ΔPaLoc mutant strain lost its virulence to Vero and Caco-2 cells compared to the wild-type Cd630 strain. Conclusion: Transcriptional sequencing analysis of the Cd630 and ΔPaLoc mutant strains showed that the toxin genes were not transcribed. Those other differential genes could provide a reference for further studies on the physiological and biochemical properties of the ΔPaLoc mutant strain. Cytotoxicity assays confirmed that the ΔPaLoc mutant lost virulence to Vero and Caco-2 cells, thus laying the foundation for constructing an toxin-attenuated vaccine strain against C. difficile.
Bacterial Proteins/metabolism*
;
Bacterial Toxins/metabolism*
;
Caco-2 Cells
;
Clostridioides
;
Clostridioides difficile/genetics*
;
Humans
;
Oxidoreductases/metabolism*
;
Transcriptome
;
Vaccines, Attenuated
5.Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin.
Leilei LIU ; Peiwen XU ; Kaiyu LIU ; Wei WEI ; Zhongshen CHANG ; Dahui CHENG
Chinese Journal of Biotechnology 2022;38(5):1809-1823
Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.
Animals
;
Bacillus thuringiensis/genetics*
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
Endotoxins/metabolism*
;
Hemolysin Proteins/metabolism*
;
Insecta/metabolism*
;
Insecticide Resistance/genetics*
;
Insecticides/pharmacology*
;
Pest Control, Biological
6.Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance.
Miao-Miao LIU ; Xiao-Jing ZHANG ; Yan GAO ; Zhi-Cheng SHEN ; Chao-Yang LIN
Journal of Zhejiang University. Science. B 2018;19(8):610-619
A transgenic maize event ZD12-6 expressing a Bacillus thuringiensis (Bt) fusion protein Cry1Ab/Cry2Aj and a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein G10 was characterized and evaluated. Southern blot analysis indicated that ZD12-6 is a single copy integration event. The insert site was determined to be at chromosome 1 by border sequence analysis. Expression analyses of Bt fusion protein Cry1Ab/Cry2Aj and the EPSPS protein G10 suggested that they are both expressed stably in different generations. Insect bioassays demonstrated that the transgenic plants are highly resistant to Asian corn borer (Ostrinia furnacalis), cotton boll worm (Helicoverpa armigera), and armyworm (Mythimna separata). This study suggested that ZD12-6 has the potential to be developed into a commercial transgenic line.
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism*
;
Animals
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
China
;
Disease Resistance/genetics*
;
Drug Resistance/genetics*
;
Endotoxins/metabolism*
;
Gene Expression Profiling
;
Glycine/chemistry*
;
Hemolysin Proteins/metabolism*
;
Insecta
;
Plant Diseases/prevention & control*
;
Plants, Genetically Modified/genetics*
;
Zea mays/genetics*
;
Glyphosate
7.Evaluation of Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens.
Bo Moon SHIN ; Sun Mee YOO ; Won Chang SHIN
Annals of Laboratory Medicine 2016;36(2):131-137
BACKGROUND: We evaluated the performance of four commercial nucleic acid amplification tests (NAATs: Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile) for direct and rapid detection of Clostridium difficile toxin genes. METHODS: We compared four NAATs on the same set of 339 stool specimens (303 prospective and 36 retrospective specimens) with toxigenic culture (TC). RESULTS: Concordance rate among four NAATs was 90.3% (306/339). Based on TC results, the sensitivity and specificity were 90.0% and 92.9% for Xpert; 86.3% and 89.3% for Max; 84.3% and 94.4% for IMDx; and 82.4% and 93.7% for Illumigene, respectively. For 306 concordant cases, there were 11 TC-negative/NAATs co-positive cases and 6 TC-positive/NAATs co-negative cases. Among 33 discordant cases, 18 were only single positive in each NAAT (Xpert, 1; Max, 12; IMDx, 1; Illumigene, 4). Positivity rates of the four NAATs were associated with those of semi-quantitative cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). CONCLUSIONS: Commercial NAATs may be rapid and reliable methods for direct detection of tcdA and/or tcdB in stool specimens compared with TC. Some differences in the sensitivity of the NAATs may partly depend on the number of toxigenic C. difficile in stool specimens.
Bacterial Proteins/genetics
;
Bacterial Toxins/genetics
;
Clostridium Infections/*diagnosis/microbiology
;
Clostridium difficile/*genetics/isolation & purification
;
DNA, Bacterial/*analysis/metabolism
;
Enterotoxins/genetics
;
Feces/*microbiology
;
Humans
;
*Multiplex Polymerase Chain Reaction
;
Reagent Kits, Diagnostic
;
Sensitivity and Specificity
8.Study on membrane injury mechanism of total alkaloids and berberine from Coptidis Rhizoma on Aeromonas hydrophila.
Dong-fang XUE ; Zong-yao ZOU ; Biao CHEN ; Yan-zhi WANG ; Hao WU ; Xiao-li YE ; Xue-gang LI
China Journal of Chinese Materia Medica 2015;40(9):1787-1792
To explore the antibacterial activity and mechanism of total alkaloids and berberine from Coptidis Rhizoma on Aeromonas hydrophila, and determine the effect of total alkaloids and berberine from Coptidis Rhizoma on minimum inhibitory concentrations, permeability and fluidity of cell membrane, conformation of membrane proteins and virulence factors of A. hydrophila. The results showed that both total alkaloids and berberine from Coptidis Rhizoma had antibacterial activities on A. hydrophila, with minimum inhibitory concentrations of 62.5 and 125 mg · L(-1), respectively. Total alkaloids and berberine from Coptidis Rhizoma could increase the fluidity of membrane, change the conformation of membrane porteins and increase the permeability of bacteria membrane by 24.52% and 19.66%, respectively. Besides, total alkaloids and berberine from Coptidis Rhizoma significantly decreased the hemolysis of exotoxin and the mRNA expressions of aerA and hlyA (P < 0.05, P < 0.01), the secretion of endotoxin and the mRNA expression of LpxC (P < 0.05, P < 0.01). The results suggested that the antibacterial activity of total alkaloids and berberine from Coptidis Rhizoma on A. hydrophila may be related to the bacteria membrane injury. They inhibited the bacterial growth by increasing membrane lipid fluidity and changing conformation of membrane proteins, and reduced the secretion of virulence factors of A. hydrophila to weaken the pathogenicity.
Aeromonas hydrophila
;
drug effects
;
genetics
;
metabolism
;
Alkaloids
;
pharmacology
;
Anti-Bacterial Agents
;
pharmacology
;
Bacterial Proteins
;
genetics
;
metabolism
;
Bacterial Toxins
;
biosynthesis
;
Berberine
;
pharmacology
;
Cell Membrane
;
drug effects
;
genetics
;
metabolism
;
Coptis
;
chemistry
;
Drugs, Chinese Herbal
;
pharmacology
;
Membrane Fluidity
;
drug effects
;
Rhizome
;
chemistry
9.Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples.
Abdullah KILIC ; Mohammad J ALAM ; Naradah L TISDEL ; Dhara N SHAH ; Mehmet YAPAR ; Todd M LASCO ; Kevin W GAREY
Annals of Laboratory Medicine 2015;35(3):306-313
BACKGROUND: The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. METHODS: The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. RESULTS: A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. CONCLUSIONS: The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run.
ADP Ribose Transferases/genetics
;
Bacterial Proteins/*genetics
;
Bacterial Toxins/*genetics
;
Clostridium difficile/isolation & purification/*metabolism
;
DNA, Bacterial/genetics/metabolism
;
Enterotoxins/genetics
;
Feces/*microbiology
;
Humans
;
Multiplex Polymerase Chain Reaction
;
Prospective Studies
;
Real-Time Polymerase Chain Reaction
;
Triose-Phosphate Isomerase/genetics
10.Prevalence of Antibody to Toxic Shock Syndrome Toxin-1 in Burn Patients.
Ji Young PARK ; Jae Seok KIM ; Heungjeong WOO
Annals of Laboratory Medicine 2015;35(1):89-93
BACKGROUND: Burn wounds lack normal barriers that protect against pathogenic bacteria, and burn patients are easily colonized and infected by Staphylococcus aureus. Toxic shock syndrome (TSS) is a rare but fatal disease caused by S. aureus. A lack of detectable antibodies to TSS toxin-1 (TSST-1) in serum indicates susceptibility to TSS. METHODS: A total of 207 patients (169 men and 38 women; median age, 42.5 yr) admitted to a burn center in Korea were enrolled in this study. The serum antibody titer to TSST-1 was measured by sandwich ELISA. S. aureus isolates from the patients' nasal swab culture were tested for TSST-1 toxin production by PCR-based detection of the TSST-1 toxin gene. RESULTS: One hundred seventy-four (84.1%) patients showed positive results for antibody against TSST-1. All patients aged > or =61 yr (n=28) and <26 months (n=7) were positive for the anti-TSST-1 antibody. S. aureus was isolated from 70 patients (33.8%), and 58.6% of the isolates were methicillin resistant. Seventeen patients were colonized with TSST-1-producing S. aureus. The antibody positivity in these 17 carriers was 88.2%, and the positivity in the non-carriers was 83.7%. CONCLUSIONS: Most burn patients had antibody to TSST-1, and nasal colonization with TSST-1-producing S. aureus was associated with positive titers of anti-TSST-1 antibody. Additionally, patients with negative titers of anti-TSST-1 antibody might be susceptible to TSS.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Bacterial/*blood
;
Bacterial Toxins/genetics/immunology/*metabolism
;
Burns/blood/*immunology/*microbiology/pathology
;
Child
;
Child, Preschool
;
Enterotoxins/genetics/immunology/*metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Humans
;
Infant
;
Male
;
Middle Aged
;
Nasal Cavity/microbiology
;
Polymerase Chain Reaction
;
Prevalence
;
Staphylococcal Infections/epidemiology
;
Staphylococcus aureus/isolation & purification/*metabolism
;
Superantigens/genetics/immunology/*metabolism
;
Young Adult

Result Analysis
Print
Save
E-mail