1.Mechanism analysis of platelet activation induced by V. vulnificus hemolysin.
Yan WANG ; Zihan FENG ; Yaru WANG ; Shiqing LI ; Xin CHEN ; Jinglin WANG ; Yuan YUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):134-142
Objective To evaluate whether Vibrio vulnificus secreted exotoxin-hemolysin (VVH) can activate platelet, an important blood immune cell, and to explore the possible molecular mechanism of platelet activation by VVH. Methods Transcriptomics and immunohistochemistry were used to analyze whether Vibrio vulnificus infection caused platelet activation in mice. Then, flow cytometry was used to identify whether VVH was the main stimulator of platelet activation. Naturally expressed VVH toxin was purified and prepared. The effects of extracellular and intracellular Ca2+ signal inhibitors on VVH activated platelets were evaluated by flow cytometry and Western blotting. The immune activation effect of VVH in the early stage of Vibrio vulnificus infection was analyzed in vivo. Results VVH was the main stimulator of platelet activation in Vibrio vulnificus culture supernatant. Natural VVH can induce the increase of P-selectin (CD62P) on platelet surface, the formation of platelet-neutrophil complex (PNC), and the release of platelet microvesicles. The activation mechanism may be related to the VVH pore-dependent Ca2+-calmodulin (CaM) -myosin light chain kinase (MLCK) signaling pathway, which led to the release of platelet alpha particles and cascade activation of platelets. In a mouse model of ALD infected by Vibrio vulnificus gavage, VVH was strongly associated with platelet activation. Conclusion This study shows that VVH is an important platelet activating molecule in the early stage of Vibrio vulnificus infection, and its induction of platelet activation may be related to the pathogenic process.
Animals
;
Platelet Activation/drug effects*
;
Hemolysin Proteins/pharmacology*
;
Vibrio vulnificus/metabolism*
;
Mice
;
Blood Platelets/drug effects*
;
Vibrio Infections/immunology*
;
P-Selectin/metabolism*
;
Bacterial Proteins
;
Female
2.Bioinformatics analysis of ureaplasma urealyticum UP3-RS02445 and the preparation of monoclonal antibodies.
Hengxin CHEN ; Xiaohui JIA ; Yahui LI ; Yan ZHOU ; Tianjun JIA ; Ping LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):1011-1017
Objective To make the bioinformatics analysis of Ureaplasma parvum UP3-RS02445 and prepare monoclonal antibody (mAb) against UP3-RS02445. Methods The biological characteristics of UP3-RS02445 protein were predicted by bioinformatics software. The UP3-RS02445 prokaryotic expression plasmid was constructed and the corresponding protein expression was induced by isopropyl-β-D-thiogalactoside (IPTG). Thus the expressed protein was used as immunogen to immunize female BALB/c mice. Hybridoma cell technology was used to prepare the monoclonal antibody against UP3-RS02445. The specificity and titer of monoclonal antibody were detected by Western blot and ELISA respectively. The subclass of heavy chain and subtype of light chain were identified by monoclonal antibody subtype identification test strip. Results Bioinformatics analysis showed that UP3-RS02445 protein was composed of 201 amino acids, without transmembrane domain and signal peptide, and belongs to non-secretory proteins. The recombinant prokaryotic plasmid of UP3-RS02445 was successfully constructed and the recombinant protein could be induced in large amount. After cell fusion, two hybridoma cells (A1H5 and A4E2) secreting UP3-RS02445 mAb were screened by ELISA and Western blot. The results of ELISA showed that the titers of monoclonal antibodies were 1:2560. Western blot and Immunofluorescence technique both indicated that the antibodies could bind specifically to the UP3-RS02445 protein. The heavy chain and light chain of the two mAbs were IgG1 and kappa subtypes respectively. Conclusion We prepared the UP3-RS02445 monoclonal antibodies with well specificity and high titer which might lay foundations for the subsequent development of UP diagnostic reagents and the functional study of protein.
Antibodies, Monoclonal/immunology*
;
Animals
;
Mice, Inbred BALB C
;
Female
;
Computational Biology/methods*
;
Mice
;
Ureaplasma urealyticum/genetics*
;
Bacterial Proteins/genetics*
;
Antibody Specificity
;
Enzyme-Linked Immunosorbent Assay
;
Hybridomas/immunology*
3.Construction of a recombinant Bacillus subtilis strain expressing SpaA and CbpB of Erysipelothrix rhusiopathiae and evaluation of the strain immunogenicity in a mouse model.
Zhonglin CHENG ; Hao HUANG ; Siyi CAO ; Huahui SHI ; Jiye GAO ; Jixiang LI
Chinese Journal of Biotechnology 2024;40(12):4521-4532
To construct a recombinant Bacillus subtilis strain expressing SpaA and CbpB of Erysipelothrix rhusiopathiae for oral administration, we constructed the recombinant plasmid pDG1730-CBJA by fusion PCR and seamless cloning. The plasmid was introduced into B. subtilis KC strain by natural transformation, and the recombinant strain KC-spaA-cbpB was screened out on the plate containing spectinomycin (sper) and confirmed by PCR and starch degradation test. The SpaA and CbpB expressed by KC-spaA-cbpB were detected by Western blotting and indirect immunofluorescence assay, and the genetic stability of the recombinant strain in mice was determined. The plasmid pMAD-∆sper with knockout of sper was constructed and transformed into KC-spaA-cbpB. The sper-deleted mutant strain KC-spaA-cbpB: : ∆sper was screened and identified, and its immunogenicity in a mouse model was evaluated by oral immunization. The results showed that the recombinant strain KC-spaA-cbpB was stable in mice, expressing SpaA on the cell surface and CbpB on the spore surface. KC-spaA-cbpB: : ∆sper expressed SpaA and CbpB. The mice vaccinated with the spores of KC-spaA-cbpB: : ∆sper had higher levels of SpaA and CbpB-specific IgG in the serum that those vaccinated with the wild-type spores 42 days after vaccination by gavage (P < 0.01). The protective rate of mice immunized with the recombinant spores was 67.5%. The results indicated that a recombinant B. subtilis strain expressing SpaA and CbpB of E. rhusiopathiae was successfully constructed, and the recombinant strain laid a foundation for the development of oral live vector vaccines for swine erysipelas.
Animals
;
Bacillus subtilis/immunology*
;
Mice
;
Erysipelothrix/immunology*
;
Bacterial Proteins/immunology*
;
Bacterial Vaccines/genetics*
;
Erysipelothrix Infections/prevention & control*
;
Immunization
;
Mice, Inbred BALB C
;
Plasmids/genetics*
;
Immunogenicity, Vaccine
;
Administration, Oral
;
Antigens, Bacterial
4.Immunogenicity of Whole
Shi Qi XIAO ; Da XU ; Hong Yang DUAN ; Xue Ting FAN ; Gui Lian LI ; Wen ZHANG ; Ma Chao LI ; Na HAN ; Xin Yao LI ; Na LI ; Li Lan ZHAO ; Xiu Qin ZHAO ; Kang Lin WAN ; Hai Can LIU ; Wen Hai FENG
Biomedical and Environmental Sciences 2021;34(7):528-539
Objectives:
To evaluate the immunogenicity of
Methods:
Protein extracts from
Results:
Immunization with
Conclusion
This is the advanced study to investigate the immunogenicity of
Animals
;
Antibodies, Bacterial/immunology*
;
Antigens, Bacterial/immunology*
;
Bacterial Proteins/immunology*
;
Cross Reactions
;
Cytokines/immunology*
;
Female
;
Genome, Bacterial
;
Immunoglobulin G/immunology*
;
Immunoglobulin M/immunology*
;
Macrophages/immunology*
;
Mice, Inbred BALB C
;
Mycobacterium avium Complex/immunology*
;
Mycobacterium tuberculosis/immunology*
;
Tuberculosis Vaccines/administration & dosage*
;
Whole Genome Sequencing
5.Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice.
San Jun GUO ; Shan REN ; Yong En XIE
Biomedical and Environmental Sciences 2018;31(2):155-158
Acinetobacter baumannii (A. Baumannii) is an emerging opportunistic pathogen responsible for hospital-acquired infections, and which now constitutes a sufficiently serious threat to public health to necessitate the development of an effective vaccine. In this study, a recombinant fused protein named OmpK/Omp22 and two individual proteins OmpK and Omp22 were obtained using recombinant expression and Ni-affinity purification. Groups of BALB/c mice were immunized with these proteins and challenged with a clinically isolated strain of A. baumannii. The bacterial load in the blood, pathological changes in the lung tissue and survival rates after challenge were evaluated. Mice immunized with OmpK/Omp22 fused protein provided significantly greater protection against A. baumannii challenge than those immunized with either of the two proteins individually. The results provide novel clues for future design of vaccines against A. baumannii.
Acinetobacter Infections
;
pathology
;
prevention & control
;
Acinetobacter baumannii
;
genetics
;
immunology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Bacterial Load
;
Bacterial Outer Membrane Proteins
;
genetics
;
immunology
;
Bacterial Vaccines
;
immunology
;
Disease Models, Animal
;
Female
;
Mice, Inbred BALB C
;
Pneumonia, Bacterial
;
pathology
;
prevention & control
;
Recombinant Fusion Proteins
;
genetics
;
immunology
6.Immunoprotective effect of combined pneumococcal endopeptidase O and pneumococcal surface adhesin A vaccines against Streptococcus pneumoniae infection.
Jing ZHANG ; Ya-Li CUI ; Yong-Mei JIANG
Chinese Journal of Contemporary Pediatrics 2017;19(5):583-589
OBJECTIVETo investigate the prokaryotic expression of proteins pneumococcal endopeptidase O (PepO) and pneumococcal surface adhesin A (PsaA) in Streptococcus pneumoniae and their immunoprotective effect as vaccine candidate proteins.
METHODSSpecific primers of target gene fragments were designed, and then PCR amplification was performed to establish recombinant plasmids pET28a(+)-pepO and pET28a(+)-psaA, which were transformed into host cells, Escherichia coli BL21 and DE3, respectively, to induce expression. Highly purified target proteins PepO and PsaA were obtained after purification. Mucosal immunization was performed for BALB/c mice and specific antiserum was prepared. ELISA was used to measure the antibody titer, and Western blot was used to analyze the specificity of the antiserum of target proteins. The mice were randomly divided into negative control group, PepO group, PsaA group, and PepO+PsaA combined immunization group, with 18 mice in each group. The models of different serotypes of Streptococcus pneumoniae infection were established to evaluate the immunoprotective effect of target proteins used alone or in combination.
RESULTSThe target proteins PepO and PsaA were successfully obtained and Western blot demonstrated that the antiserum of these proteins had good specificity. There was no significant difference in the titers of IgA in saliva and IgG in serum between the PepO group and the combined immunization group (P>0.05); however, these two groups had significantly higher antibody titers than the PsaA group (P<0.05). The PepO, PsaA, and combined immunization groups had significantly higher protection rates for mice infected with Streptococcus pneumoniae D39 and CMCC31436 in the nasal cavity than the negative control group (P<0.05). The PepO and combined immunization groups had a significantly higher protection rate for mice infected with Streptococcus pneumoniae D39 than the PsaA group (P<0.05). The results of colonization experiment showed that compared with the control group, the PepO, PsaA, and combined immunization groups showed a significant reduction in the colonization of Streptococcus pneumoniae (CMCC31693 and CMCC31207) in the nasopharynx and lung (P<0.05). The combined immunization group showed a better effect on reducing the colonization of CMCC31207 in the lung than the PepO and PsaA alone groups.
CONCLUSIONSCombined PepO/PsaA vaccines may produce a better protective effect by mucosal immunization compared with the vaccine used alone in mice. The combined vaccines can effectively reduce the colonization of Streptococcus pneumoniae in the nasopharynx and lung. Therefore, such protein vaccines may have a great potential for research and development.
Adhesins, Bacterial ; immunology ; Animals ; Antibodies, Bacterial ; analysis ; Bacterial Proteins ; immunology ; Female ; Immunization ; Lipoproteins ; immunology ; Lung ; microbiology ; Metalloendopeptidases ; immunology ; Mice ; Mice, Inbred BALB C ; Pneumococcal Infections ; prevention & control ; Pneumococcal Vaccines ; immunology ; Saliva ; immunology
7.The emerging roles of the DDX41 protein in immunity and diseases.
Yan JIANG ; Yanping ZHU ; Zhi-Jie LIU ; Songying OUYANG
Protein & Cell 2017;8(2):83-89
RNA helicases are involved in almost every aspect of RNA, from transcription to RNA decay. DExD/H-box helicases comprise the largest SF2 helicase superfamily, which are characterized by two conserved RecA-like domains. In recent years, an increasing number of unexpected functions of these proteins have been discovered. They play important roles not only in innate immune response but also in diseases like cancers and chronic hepatitis C. In this review, we summarize the recent literatures on one member of the SF2 superfamily, the DEAD-box protein DDX41. After bacterial or viral infection, DNA or cyclic-di-GMP is released to cells. After phosphorylation of Tyr414 by BTK kinase, DDX41 will act as a sensor to recognize the invaders, followed by induction of type I interferons (IFN). After the immune response, DDX41 is degraded by the E3 ligase TRIM21, using Lys9 and Lys115 of DDX41 as the ubiquitination sites. Besides the roles in innate immunity, DDX41 is also related to diseases. An increasing number of both inherited and acquired mutations in DDX41 gene are identified from myelodysplastic syndrome and/or acute myeloid leukemia (MDS/AML) patients. The review focuses on DDX41, as well as its homolog Abstrakt in Drosophila, which is important for survival at all stages throughout the life cycle of the fly.
Agammaglobulinaemia Tyrosine Kinase
;
Animals
;
Bacterial Infections
;
genetics
;
immunology
;
Cyclic GMP
;
analogs & derivatives
;
genetics
;
immunology
;
DEAD-box RNA Helicases
;
genetics
;
immunology
;
Drosophila Proteins
;
genetics
;
immunology
;
Drosophila melanogaster
;
Humans
;
Leukemia, Myeloid, Acute
;
genetics
;
immunology
;
Mutation
;
Myelodysplastic Syndromes
;
genetics
;
immunology
;
Nuclear Proteins
;
genetics
;
immunology
;
Protein-Tyrosine Kinases
;
genetics
;
immunology
;
Virus Diseases
;
genetics
;
immunology
8.Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.
Alisha Wehdnesday Bernardo REYES ; Hannah Leah Tadeja SIMBORIO ; Huynh Tan HOP ; Lauren Togonon ARAYAN ; Suk KIM
Journal of Veterinary Science 2016;17(1):119-122
The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis.
Animals
;
Antigens, Bacterial/*immunology
;
Brucella abortus/*enzymology/immunology
;
Brucellosis/diagnosis/*veterinary
;
Cattle
;
Cattle Diseases/*diagnosis
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli/genetics
;
Malate Dehydrogenase/*genetics/*immunology/isolation & purification
;
Mice
;
Recombinant Proteins/genetics/*immunology
9.Development of a Novel PmpD-N ELISA for Chlamydia psittaci Infection.
Shan Shan LIU ; ; Jun CHU ; Qiang ZHANG ; Wei SUN ; Tian Yuan ZHANG ; Cheng HE
Biomedical and Environmental Sciences 2016;29(5):315-322
OBJECTIVEChlamydia psittaci is an avian respiratory pathogen and zoonotic agent. The wide prevalence of C. psittaci poses a threat to the poultry industry and its employees. However, few commercial kits are available for detecting avian antibodies excluding the in-house ELISA kit. In this study, we developed a novel ELISA kit for detecting antibodies against C. psittaci based on the N-terminal fragment of polymorphic outer membrane protein D (PmpD-N) as the coating antigen.
METHODSThe antigen concentrations, primary antibody, and cut-off value were determined and optimized. The ELISA, designated PmpD-N ELISA, was assessed for sensitivity, specificity, and concordance using sera samples from 48 experimentally infected and 168 uninfected SPF chickens.
RESULTSThe sensitivity and specificity of PmpD-N ELISA were 97.9%, 100%, respectively, while the concordance was 98.1% as compared to that of MOMP-ELISA. No cross-reaction with positive sera for other avian pathogens was found. Using PmpD-N ELISA, 799/836 clinical samples were positive, including 93.0% and 98.1% positivity in layers and broilers, respectively.
CONCLUSIONThese data indicate that indirect ELISA with PmpD-N as the antigen candidate is a promising approach for the surveillance of C. psittaci infection.
Animals ; Bacterial Proteins ; analysis ; Chickens ; Chlamydophila psittaci ; genetics ; immunology ; isolation & purification ; Enzyme-Linked Immunosorbent Assay ; veterinary ; Membrane Proteins ; analysis ; Poultry Diseases ; diagnosis ; microbiology ; Psittacosis ; diagnosis ; microbiology ; veterinary ; Sensitivity and Specificity
10.Immunogenicity and prediction of epitopic region of antigen Ag I/II and glucosyltransferase from Streptococcus mutans.
Xi-Xi CAO ; Jian FAN ; Jiang CHEN ; Yu-Hong LI ; Ming-Wen FAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):416-421
The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.
Antibodies, Bacterial
;
biosynthesis
;
Antigens, Bacterial
;
chemistry
;
immunology
;
Bacterial Proteins
;
chemistry
;
immunology
;
Case-Control Studies
;
Child, Preschool
;
Dental Caries
;
immunology
;
pathology
;
prevention & control
;
Epitopes
;
chemistry
;
immunology
;
Female
;
Glucosyltransferases
;
chemistry
;
immunology
;
Humans
;
Immunoglobulin A, Secretory
;
biosynthesis
;
Male
;
Peptides
;
chemistry
;
immunology
;
Saliva
;
chemistry
;
microbiology
;
Severity of Illness Index
;
Streptococcal Vaccines
;
biosynthesis
;
chemistry
;
immunology
;
Streptococcus mutans
;
chemistry
;
immunology
;
pathogenicity
;
Vaccines, Subunit
;
Virulence Factors
;
chemistry
;
immunology

Result Analysis
Print
Save
E-mail