1.Mining and characterization of new enzymes based on Phi29 DNA polymerase.
Mengyao HAO ; Lingling HU ; Minghao HAN ; Congyu LI ; Hong CHANG ; Jianmei LUO ; Huifeng JIANG
Chinese Journal of Biotechnology 2025;41(1):427-436
In recent years, the bacteriophage Φ29 (Phi29) DNA polymerase has garnered increasing attention due to its high-fidelity amplification capacity at constant temperatures. To advance the industrial application of this type of isothermal polymerases, this study mined and characterized new enzymes from the microbial metagenome based on the known Phi29 DNA polymerase sequence. The results revealed that a new enzyme, Php29 DNA polymerase, was identified in the microbial metagenome with plants as the hosts. This enzyme exhibited higher strand displacement activity, with a 59.5% similarity to bacteriophage Φ29. Experimental validation demonstrated that the enzyme had 3'→5' exonuclease activity, and its amplification products can serve as substrates for further catalytic reactions. The discovery and validation of Php29 DNA polymerase gives insights into the future industrial application of isothermal polymerases.
DNA-Directed DNA Polymerase/metabolism*
;
Bacillus Phages/genetics*
;
Metagenome
2.Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis.
Gang LIU ; Yan ZHANG ; Miao XING
Chinese Journal of Biotechnology 2006;22(2):191-197
The effect of dual promoters on recombinant protein production from bacterial phage based Bacillus subtilis expression system was investigated. Alpha amylase (from Bacillus amyloliquefaciens) and penicillin acylase (from Bacillus megaterium) were selected as the indicating enzymes. Both the promoterless genes and the promoter-bearing genes were isolated through PCR amplification with properly designed primers, and were inserted into plasmid pSG703 that contains the lacZ-cat expression cartridge. The lysogenic B. subtilis (phi105 MU331) was transformed with the resultant recombinant plasmids, and the heterologous genes were thereby integrated into the chromosommal DNA of B. subtilis via homologous recombination. The transformants were designated as B. subtilis AMY1, B. subtilis AMY2, B. subtilis PA1, and B. subtilis PA2, respectively. In the recombinant B. subtilis strains, the inserted sequences were located down stream of a strong phage promoter that could be activated by thermal induction. In B. subtilis AMY1 and B. subtilis PA1, transcription of the heterologous genes was only initiated by the phage promoter after heat shock, whereas in B. subtilis AMY2 and B. subtilis PA2, transcription of the heterologous genes was initiated by dual promoters, the phage promoter and the native promoter. The application of dual promoters increased the productivity of both enzymes, with 133% enhancement for alpha-amylase production and 113% enhancement for penicillin acylase production.
Bacillus Phages
;
genetics
;
metabolism
;
Bacillus subtilis
;
genetics
;
metabolism
;
Cloning, Molecular
;
Penicillin Amidase
;
biosynthesis
;
genetics
;
Promoter Regions, Genetic
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Transformation, Bacterial
;
alpha-Amylases
;
biosynthesis
;
genetics

Result Analysis
Print
Save
E-mail