1.Incidence and genetic reproductive characteristics of AZFc microdeletion among patients with azoospermia or severe oligospermia.
Chiyan ZHOU ; Hui WANG ; Qin ZHU ; Luming WANG ; Binzhen ZHU ; Xiaodan LIU
Chinese Journal of Medical Genetics 2023;40(1):26-30
OBJECTIVE:
To explore the incidence of azoospermia factor c (AZFc) microdeletion among patients with azoospermia or severe oligospermia, its association with sex hormone/chromosomal karyotype, and its effect on the outcome of pregnancy following intracytoplasmic sperm injection (ICSI) treatment.
METHODS:
A total of 1 364 males with azoospermia or severe oligospermia who presented at the Affiliated Maternity and Child Health Care Hospital of Jiaxing College between 2013 and 2020 were subjected to AZF microdeletion and chromosome karyotyping analysis. The level of reproductive hormones in patients with AZFc deletions was compared with those of control groups A (with normal sperm indices) and B (azoospermia or severe oligospermia without AZFc microdeletion). The outcome of pregnancies for the AZFc-ICSI couples was compared with that of the control groups in regard to fertilization rate, superior embryo rate and clinical pregnancy rate.
RESULTS:
A total of 51 patients were found to harbor AZFc microdeletion, which yielded a detection rate of 3.74%. Seven patients also had chromosomal aberrations. Compared with control group A, patients with AZFc deletion had higher levels of PRL, FSH and LH (P < 0.05), whilst compared with control group B, only the PRL and FSH were increased (P < 0.05). Twenty two AZFc couples underwent ICSI treatment, and no significant difference was found in the rate of superior embryos and clinical pregnancy between the AZFc-ICSI couples and the control group (P > 0.05).
CONCLUSION
The incidence of AZFc microdeletion was 3.74% among patients with azoospermia or severe oligospermia. AZFc microdeletion was associated with chromosomal aberrations and increased levels of PRL, FSH and LH, but did not affect the clinical pregnancy rate after ICSI treatment.
Child
;
Humans
;
Male
;
Female
;
Pregnancy
;
Azoospermia/genetics*
;
Oligospermia/genetics*
;
Incidence
;
Chromosome Deletion
;
Chromosomes, Human, Y/genetics*
;
Semen
;
Infertility, Male/genetics*
;
Chromosome Aberrations
;
Follicle Stimulating Hormone/genetics*
2.Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region.
Chen-Yao DENG ; Zhe ZHANG ; Wen-Hao TANG ; Hui JIANG
Asian Journal of Andrology 2023;25(1):5-12
Spermatogenesis is regulated by several Y chromosome-specific genes located in a specific region of the long arm of the Y chromosome, the azoospermia factor region (AZF). AZF microdeletions are the main structural chromosomal abnormalities that cause male infertility. Assisted reproductive technology (ART) has been used to overcome natural fertilization barriers, allowing infertile couples to have children. However, these techniques increase the risk of vertical transmission of genetic defects. Despite widespread awareness of AZF microdeletions, the occurrence of de novo deletions and overexpression, as well as the expansion of AZF microdeletion vertical transmission, remains unknown. This review summarizes the mechanism of AZF microdeletion and the function of the candidate genes in the AZF region and their corresponding clinical phenotypes. Moreover, vertical transmission cases of AZF microdeletions, the impact of vertical inheritance on male fertility, and the prospective direction of research in this field are also outlined.
Humans
;
Male
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations
;
Prospective Studies
;
Chromosome Deletion
;
Chromosomes, Human, Y/genetics*
;
Infertility, Male/genetics*
;
Sertoli Cell-Only Syndrome/genetics*
;
Oligospermia/genetics*
3.Identification of risk genes in Chinese nonobstructive azoospermia patients based on whole-exome sequencing.
Yu-Jun LIU ; Xin-Jie ZHUANG ; Jian-Ting AN ; Hui JIANG ; Rong LI ; Jie QIAO ; Li-Ying YAN ; Xu ZHI
Asian Journal of Andrology 2023;25(1):66-72
Nonobstructive azoospermia (NOA) is a severe condition in infertile men, and increasing numbers of causative genes have been identified during the last few decades. Although certain causative genes can explain the presence of NOA in some patients, a proportion of NOA patients remain to be addressed. This study aimed to investigate potential high-risk genes associated with spermatogenesis in idiopathic NOA patients by whole-exome sequencing. Whole-exome sequencing was performed in 46 male patients diagnosed with NOA. First, screening was performed for 119 genes known to be related to male infertility. Next, further screening was performed to determine potential high-risk causative genes for NOA by comparisons with 68 healthy male controls. Finally, risk genes with high/specific expression in the testes were selected and their expression fluctuations during spermatogenesis were graphed. The frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene pathogenic variant carriers was higher in the NOA patients compared with the healthy controls. Potential risk genes that may be causes of NOA were identified, including seven genes that were highly/specifically expressed in the testes. Four risk genes previously reported to be involved in spermatogenesis (MutS homolog 5 [MSH5], cilia- and flagella-associated protein 54 [CFAP54], MAP7 domain containing 3 [MAP7D3], and coiled-coil domain containing 33 [CCDC33]) and three novel risk genes (coiled-coil domain containing 168 [CCDC168], chromosome 16 open reading frame 96 [C16orf96], and serine protease 48 [PRSS48]) were identified to be highly or specifically expressed in the testes and significantly different in the 46 NOA patients compared with 68 healthy controls. This study on clinical NOA patients provides further evidence for the four previously reported risk genes. The present findings pave the way for further functional investigations and provide candidate risk genes for genetic diagnosis of NOA.
Humans
;
Male
;
Azoospermia/pathology*
;
East Asian People
;
Exome Sequencing
;
Mutation
;
Proteins/genetics*
5.Analysis of copy number variation in AZF region of Y chromosome in patients with spermatogenic failure.
Hui GAO ; Lijuan WANG ; Yaqin SONG ; Di MA ; Rui NIE ; Yuhua HU ; Huiyan HE ; Ruanzhang ZHANG ; Shayan WANG ; Hui GUO
Chinese Journal of Medical Genetics 2023;40(9):1068-1074
OBJECTIVE:
To explore the characteristics of copy number variation (CNV) within the Y chromosome azoospermia factor (AZF) region in patients with spermatogenesis disorders in the Shenzhen area.
METHODS:
A total of 123 patients with spermatogenesis disorders who had visited Shenzhen People's Hospital from January 2016 to October 2022 (including 73 patients with azoospermia and 50 patients with oligozoospermia) and 100 normal semen males were selected as the study subjects. The AZF region was detected with multiplex ligation-dependent probe amplification (MLPA), and the correlation between the CNV in the AZF region and spermatogenesis disorders was analyzed using the chi-square test or Fisher's exact test.
RESULTS:
19 CNV were detected among 53 patients from the 223 samples, including 20 cases (27.40%, 20/73) from the azoospermia group, 19 cases (38%, 19/50) from the oligozoospermia group, and 14 cases (14%, 14/100) from the normal control group. In the azoospermia, oligozoospermia, and normal control groups, the detection rates for CNV related to the AZFa region (including AZFab and AZFabc) were 5.48% (4/73), 2.00% (1/50), and 0 (0/100), respectively. The detection rates for the AZFb region (including the AZFbc region) were 6.85% (5/73), 0 (0/50), and 0 (0/100), respectively. The detection rates for gr/gr deletions in the AZFc region were 2.74% (2/73), 6.00% (3/50), and 9.00% (9/100), respectively, and those for b2/b4 deletions in the AZFc region were 2.74% (2/73), 10.00% (5/50), and 0 (0/100), respectively. The detection rates for complex rearrangements in the AZFc region were 6.85% (5/73), 18.00% (9/50), and 3.00% (3/100), respectively. Statistical analysis showed no significant difference in the detection rate of gr/gr deletions between the three groups (Fisher's Exact Test value = 2.712, P = 0.249); the differences in the detection rate of b2/b4 deletions between the three groups were statistically significant (Fisher's Exact Test value = 9.489, P = 0.002); the differences in the detection rate of complex rearrangements in the AZFc region between the three groups were statistically significant (Fisher's Exact Test value = 9.493, P = 0.006). In this study, a rare AZFa region ARSLP1 gene deletion (involving SY86 deletion) was detected in a patient with oligozoospermia.
CONCLUSION
CNV in the AZFa and AZFb regions have a severe impact on spermatogenesis, but partial deletion in the AZFa region (ARSLP1 gene deletion) has a minor impact on spermatogenesis. The b2/b4 deletion and complex rearrangement in the AZFc region may be risk factors for male infertility. The gr/gr deletion may not serve as a risk factor for male infertility in the Shenzhen area.
Humans
;
Male
;
Azoospermia/genetics*
;
DNA Copy Number Variations
;
Oligospermia/genetics*
;
Infertility, Male/genetics*
;
Y Chromosome
6.Polymerase chain reaction-based assays facilitate the breeding and study of mouse models of Klinefelter syndrome.
Hai-Xia ZHANG ; Yu-Lin ZHOU ; Wen-Yan XU ; Xiao-Lu CHEN ; Jia-Yang JIANG ; Xiao-Man ZHOU ; Zeng-Ge WANG ; Rong-Qin KE ; Qi-Wei GUO
Asian Journal of Andrology 2022;24(1):102-108
Klinefelter syndrome (KS) is one of the most frequent genetic abnormalities and the leading genetic cause of nonobstructive azoospermia. The breeding and study of KS mouse models are essential to advancing our knowledge of the underlying pathological mechanism. Karyotyping and fluorescence in situ hybridization are reliable methods for identifying chromosomal contents. However, technical issues associated with these methods can decrease the efficiency of breeding KS mouse models and limit studies that require rapid identification of target mice. To overcome these limitations, we developed three polymerase chain reaction-based assays to measure specific genetic information, including presence or absence of the sex determining region of chromosome Y (Sry), copy number of amelogenin, X-linked (Amelx), and inactive X specific transcripts (Xist) levels. Through a combined analysis of the assay results, we can infer the karyotype of target mice. We confirmed the utility of our assays with the successful generation of KS mouse models. Our assays are rapid, inexpensive, high capacity, easy to perform, and only require small sample amounts. Therefore, they facilitate the breeding and study of KS mouse models and help advance our knowledge of the pathological mechanism underlying KS.
Animals
;
Azoospermia
;
In Situ Hybridization, Fluorescence
;
Karyotyping
;
Klinefelter Syndrome/genetics*
;
Mice
;
Polymerase Chain Reaction
7.MBOAT1 homozygous missense variant causes nonobstructive azoospermia.
Yang-Yang WAN ; Lan GUO ; Yao YAO ; Xiao-Yun SHI ; Hui JIANG ; Bo XU ; Juan HUA ; Xian-Sheng ZHANG
Asian Journal of Andrology 2022;24(2):186-190
Nonobstructive azoospermia (NOA) is a common cause of infertility and is defined as the complete absence of sperm in ejaculation due to defective spermatogenesis. The aim of this study was to identify the genetic etiology of NOA in an infertile male from a Chinese consanguineous family. A homozygous missense variant of the membrane-bound O-acyltransferase domain-containing 1 (MBOAT1) gene (c.770C>T, p.Thr257Met) was found by whole-exome sequencing (WES). Bioinformatic analysis also showed that this variant was a pathogenic variant and that the amino acid residue in MBOAT1 was highly conserved in mammals. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the mRNA level of MBOAT1 in the patient was 22.0% lower than that in his father. Furthermore, we screened variants of MBOAT1 in a broader population and found an additional homozygous variant of the MBOAT1 gene in 123 infertile men. Our data identified homozygous variants of the MBOAT1 gene associated with male infertility. This study will provide new insights for researchers to understand the molecular mechanisms of male infertility and will help clinicians make accurate diagnoses.
Acetyltransferases/genetics*
;
Animals
;
Azoospermia/genetics*
;
Cell Cycle Proteins/genetics*
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Mammals
;
Membrane Proteins/genetics*
;
Mutation
8.Investigation of the genetic etiology in male infertility with apparently balanced chromosomal structural rearrangements by genome sequencing.
Matthew Hoi Kin CHAU ; Ying LI ; Peng DAI ; Mengmeng SHI ; Xiaofan ZHU ; Jacqueline Pui WAH CHUNG ; Yvonne K KWOK ; Kwong Wai CHOY ; Xiangdong KONG ; Zirui DONG
Asian Journal of Andrology 2022;24(3):248-254
Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1% of azoospermia or severe oligospermia. However, the underlying mechanisms of pathogenesis and etiologies are still largely unknown. Herein, we investigated apparently balanced interchromosomal structural rearrangements in six cases with azoospermia/severe oligospermia to comprehensively identify and delineate cryptic structural rearrangements and the related copy number variants. In addition, high read-depth genome sequencing (GS) (30-fold) was performed to investigate point mutations causative of male infertility. Mate-pair GS (4-fold) revealed additional structural rearrangements and/or copy number changes in 5 of 6 cases and detected a total of 48 rearrangements. Overall, the breakpoints caused truncations of 30 RefSeq genes, five of which were associated with spermatogenesis. Furthermore, the breakpoints disrupted 43 topological-associated domains. Direct disruptions or potential dysregulations of genes, which play potential roles in male germ cell development, apoptosis, and spermatogenesis, were found in all cases (n = 6). In addition, high read-depth GS detected dual molecular findings in case MI6, involving a complex rearrangement and two point mutations in the gene DNAH1. Overall, our study provided the molecular characteristics of apparently balanced interchromosomal structural rearrangements in patients with male infertility. We demonstrated the complexity of chromosomal structural rearrangements, potential gene disruptions/dysregulation and single-gene mutations could be the contributing mechanisms underlie male infertility.
Azoospermia/genetics*
;
Chromosome Aberrations
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Oligospermia/genetics*
;
Translocation, Genetic
9.From azoospermia to macrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene.
Zine-Eddine KHERRAF ; Caroline CAZIN ; Florence LESTRADE ; Jana MURONOVA ; Charles COUTTON ; Christophe ARNOULT ; Nicolas THIERRY-MIEG ; Pierre F RAY
Asian Journal of Andrology 2022;24(3):243-247
Thanks to tremendous advances in sequencing technologies and in particular to whole exome sequencing (WES), many genes have now been linked to severe sperm defects. A precise genetic diagnosis is obtained for a minority of patients and only for the most severe defects like azoospermia or macrozoospermia which is very often due to defects in the aurora kinase C (AURKC gene. Here, we studied a subject with a severe oligozoospermia and a phenotypic diagnosis of macrozoospermia. AURKC analysis did not reveal any deleterious variant. WES was then initiated which permitted to identify a homozygous loss of function variant in the zinc finger MYND-type containing 15 (ZMYND15 gene. ZMYND15 has been described to serve as a switch for haploid gene expression, and mice devoid of ZMYND15 were shown to be sterile due to nonobstructive azoospermia (NOA). In man, ZMYND15 has been associated with NOA and severe oligozoospermia. We confirm here that the presence of a bi-allelic ZMYND15 variant induces a severe oligozoospermia. In addition, we show that severe oligozoospermia can be associated macrozoospermia, and that a phenotypic misdiagnosis is possible, potentially delaying the genetic diagnosis. In conclusion, genetic defects in ZMYND15 can induce complete NOA or severe oligozoospermia associated with a very severe teratozoospermia. In our experience, severe oligozoospermia is often associated with severe teratozoospermia and can sometimes be misinterpreted as macrozoospermia or globozoospermia. In these instances, specific AURKC or dpy-19 like 2 (DPY19L2) diagnosis is usually negative and we recommend the direct use of a pan-genomic techniques such as WES.
Animals
;
Azoospermia/genetics*
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Membrane Proteins/genetics*
;
Mice
;
Mutation
;
Oligospermia/genetics*
;
Repressor Proteins/metabolism*
;
Teratozoospermia/genetics*
10.Identification and characterization of circular RNAs in the testicular tissue of patients with non-obstructive azoospermia.
Zhe ZHANG ; Han WU ; Lin ZHENG ; Hai-Tao ZHANG ; Yu-Zhuo YANG ; Jia-Ming MAO ; De-Feng LIU ; Lian-Ming ZHAO ; Hui LIANG ; Hui JIANG
Asian Journal of Andrology 2022;24(6):660-665
Circular RNAs (circRNAs) are highly conserved and ubiquitously expressed noncoding RNAs that participate in multiple reproduction-related diseases. However, the expression pattern and potential functions of circRNAs in the testes of patients with non-obstructive azoospermia (NOA) remain elusive. In this study, according to a circRNA array, a total of 37 881 circRNAs were identified that were differentially expressed in the testes of NOA patients compared with normal controls, including 19 874 upregulated circRNAs and 18 007 downregulated circRNAs. Using quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we confirmed that the change tendency of some specific circRNAs, including hsa_circ_0137890, hsa_circ_0136298, and hsa_circ_0007273, was consistent with the microarray data in another larger sample. The structures and characteristics of these circRNAs were confirmed by Sanger sequencing, and fluorescence in situ hybridization revealed that these circRNAs were primarily expressed in the cytoplasm. Bioinformatics analysis was used to construct the competing endogenous RNA (ceRNA) network, and numerous miRNAs that could be paired with circRNAs validated in this study were reported to be vital for spermatogenesis regulation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that genes involved in axoneme assembly, microtubule-based processes, and cell proliferation were significantly enriched. Our data suggest that there are aberrantly expressed circRNA profiles in patients with NOA and that these circRNAs may help identify key diagnostic and therapeutic molecular biomarkers for NOA patients.
Male
;
Humans
;
RNA, Circular/genetics*
;
Azoospermia/genetics*
;
In Situ Hybridization, Fluorescence
;
MicroRNAs/metabolism*

Result Analysis
Print
Save
E-mail