1.Andrology laboratory technique for analysis of semen in men with azoospermia.
Andrian JAPARI ; Dharani MOORTHY ; Amarnath RAMBHATLA
Asian Journal of Andrology 2025;27(3):293-297
Discovery of spermatozoa during the 17 th century led to developing technologies for semen analysis in the early 1900s, and then, standard techniques were implemented during the 20 th century. Semen analysis has a pivotal role in the male infertility evaluation, and azoospermia is an important finding. Azoospermia is identified in 15% of infertile men. However, the accurate laboratory assessment of azoospermia poses certain technical challenges. Laboratories currently perform semen assessment with great variability; thus, a standard method should be used. Planning suitable management and determining the cause of infertility require a precise evaluation of azoospermia. This review aims to address the definition of azoospermia and highlight laboratory methods in the assessments of azoospermia. Basic methods such as centrifugation, repeat pellet analysis, and staining and advanced methods such as genetic testing and biomarkers have been discussed. These methods have helped in standardizing the protocol for accurate azoospermia assessments with less variability.
Humans
;
Azoospermia/genetics*
;
Male
;
Semen Analysis/methods*
;
Andrology/methods*
2.Epigenetics of nonobstructive azoospermia.
Sezgin GUNES ; Asli Metin MAHMUTOGLU ; Neslihan HEKIM
Asian Journal of Andrology 2025;27(3):311-321
Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Humans
;
Azoospermia/metabolism*
;
Male
;
DNA Methylation/genetics*
;
Epigenesis, Genetic
;
Spermatogenesis/genetics*
;
RNA, Small Untranslated/genetics*
3.Study on the influence of the sY1192 gene locus in the AZFb/c region on sperm quality and pregnancy outcome.
Gang-Xin CHEN ; Yan SUN ; Rui YANG ; Zhi-Qing HUANG ; Hai-Yan LI ; Bei-Hong ZHENG
Asian Journal of Andrology 2025;27(2):231-238
Y chromosome microdeletions are an important cause of male infertility. At present, research on the Y chromosome is mainly focused on analyzing the loss of large segments of the azoospermia factor a/b/c (AZFa/b/c) gene, and few studies have reported the impact of unit point deletion in the AZF band on fertility. This study analyzed the effect of sperm quality after sY1192 loss in 116 patients. The sY1192-independent deletion accounted for 41.4% (48/116). Eight patterns were found in the deletions associated with sY1192. The rate of sperm detection was similar in the semen of patients with the independent sY1192 deletion and the combined sY1192 deletions (52.1% vs 50.0%). The patients with only sY1192 gene loss had a higher probability of sperm detection than the patients whose sY1192 gene locus existed, but other gene loci were lost (52.1% vs 32.0%). The hormone levels were similar in patients with sY1192 deletion alone and in those with sY1192 deletion and other types of microdeletions in the presence of the sY1192 locus. After multiple intracytoplasmic sperm injection (ICSI) attempts, the pregnancy rate of spouses of men with sY1192-independent deletions was similar to that of other types of microdeletions, but the fertilization and cleavage rates were higher. We observed that eight deletion patterns were observed for sY1192 microdeletions of AZFb/c, dominated by the independent deletion of sY1192. After ICSI, the fertilization rate and cleavage rate of the sY1192-independent microdeletion were higher than those of other Y chromosome microdeletion types, but there was no significant difference in pregnancy outcomes.
Humans
;
Female
;
Pregnancy
;
Male
;
Chromosomes, Human, Y/genetics*
;
Adult
;
Chromosome Deletion
;
Pregnancy Outcome/genetics*
;
Infertility, Male/genetics*
;
Spermatozoa/physiology*
;
Semen Analysis
;
Sex Chromosome Disorders of Sex Development/genetics*
;
Sperm Injections, Intracytoplasmic
;
Azoospermia/genetics*
;
Sex Chromosome Aberrations
4.Future prospects for the advancement of treatment of men with NOA: focus on gene editing, artificial sperm, stem cells, and use of imaging.
Akeem Babatunde SIKIRU ; Manh Nguyen TRUONG ; Wael ZOHDY
Asian Journal of Andrology 2025;27(3):433-439
Nonobstructive azoospermia (NOA) affects about 60% of men with azoospermia, representing a severe form of male infertility. The current approach to manage NOA primarily involves testicular sperm retrieval methods such as conventional testicular sperm extraction (c-TESE) and microdissection testicular sperm extraction (micro-TESE). While combining testicular sperm retrieval with intracytoplasmic sperm injection (ICSI) offers hope for patients, the overall sperm retrieval rate (SRR) stands at around 50%. In cases where micro-TESE fails to retrieve sperm, limited options, like donor sperm or adoption, can be problematic in certain cultural contexts. This paper delves into prospective treatments for NOA management. Gene editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 (CRISPR/Cas9), hold potential for correcting genetic mutations underlying testicular dysfunction. However, these technologies face challenges due to their complexity, potential off-target effects, ethical concerns, and affordability. This calls for research to address key challenges associated with NOA management within the clinical settings. This also necessitate ongoing research essential for developing more sensitive diagnostic tests, validating novel treatments, and customizing current treatment strategies for individual patients. This review concluded that the future of NOA management may entail a combination of these treatment options, tailored to each patient's unique circumstances, providing a comprehensive approach to address NOA challenges.
Humans
;
Male
;
Gene Editing/methods*
;
Azoospermia/genetics*
;
Sperm Retrieval
;
Sperm Injections, Intracytoplasmic
;
CRISPR-Cas Systems
;
Spermatozoa
;
Stem Cells
5.Micronucleus counts correlating with male infertility: a clinical analysis of chromosomal abnormalities and reproductive parameters.
Shun-Han ZHANG ; Ying-Jun XIE ; Wen-Jun QIU ; Qian-Ying PAN ; Li-Hao CHEN ; Jian-Feng WU ; Si-Qi HUANG ; Ding WANG ; Xiao-Fang SUN
Asian Journal of Andrology 2025;27(4):537-542
Investigating the correlation between micronucleus formation and male infertility has the potential to improve clinical diagnosis and deepen our understanding of pathological progression. Our study enrolled 2252 male patients whose semen was analyzed from March 2023 to July 2023. Their clinical data, including semen parameters and age, were also collected. Genetic analysis was used to determine whether the sex chromosome involved in male infertility was abnormal (including the increase, deletion, and translocation of the X and Y chromosomes), and subsequent semen analysis was conducted for clinical grouping purposes. The participants were categorized into five groups: normozoospermia, asthenozoospermia, oligozoospermia, oligoasthenozoospermia, and azoospermia. Patients were randomly selected for further study; 41 patients with normozoospermia were included in the control group and 117 patients with non-normozoospermia were included in the study group according to the proportions of all enrolled patients. Cytokinesis-block micronucleus (CBMN) screening was conducted through peripheral blood. Statistical analysis was used to determine the differences in micronuclei (MNi) among the groups and the relationships between MNi and clinical data. There was a significant increase in MNi in infertile men, including those with azoospermia, compared with normozoospermic patients, but there was no significant difference between the genetic and nongenetic groups in azoospermic men. The presence of MNi was associated with sperm concentration, progressive sperm motility, immotile spermatozoa, malformed spermatozoa, total sperm count, and total sperm motility. This study underscores the potential utility of MNi as a diagnostic tool and highlights the need for further research to elucidate the underlying mechanisms of male infertility.
Humans
;
Male
;
Infertility, Male/genetics*
;
Adult
;
Micronucleus Tests
;
Semen Analysis
;
Oligospermia/genetics*
;
Azoospermia/genetics*
;
Chromosome Aberrations
;
Sperm Count
;
Micronuclei, Chromosome-Defective
;
Middle Aged
6.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
7.Clinical and genetic analysis of a case of Kartagener syndrome with obstructive azoospermia induced by biallelic variation of CCDC114.
Mei-Jiao CAI ; Mei-Jiao XIN ; Yu-Lin WANG
National Journal of Andrology 2025;31(2):108-114
OBJECTIVE:
To investigate the clinical features and genetic etiology of a case of Kartagener syndrome with obstructive azoospermia (KS-OAS).
METHODS:
We collected the clinical data and results of examinations of a male infertility patient treated in the Women and Children's Hospital Affiliated to Xiamen University. We analyzed the genetic etiology of the patient by high-throughput sequencing and bioinformatics, verified the pathogenic variants of CCDC114 by Sanger sequencing of the family members, and determined the protein expression of CCDC114 in normal subjects by immunohistochemistry and immunofluorescence staining.
RESULTS:
The patient was confirmed with KS-OAS, and found with biallelic variation of CCDC114 (c.71-2A>C, c.816_817insGCAG) by sequencing, which were inherited from father and mother, respectively. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, the variants were pathogenic. Two offspring were obtained by intracytoplasmic sperm injection (ICSI).
CONCLUSION
The above findings have broadened the variation spectrum of the CCDC114, and provided some new ideas for genetic and assisted reproduction counseling for patients with Kartagener syndrome. The variation of CCDC114 does not affect the pregnancy outcome of ICSI.
Adult
;
Humans
;
Male
;
Azoospermia/genetics*
;
Kartagener Syndrome/complications*
;
Mutation
;
Sperm Injections, Intracytoplasmic
8.NSD1 regulates H3K36me2 in the pathogenesis of non-obstructive azoospermia.
Xuan ZHUANG ; Zhen-Xin CAI ; Yu-Feng YANG ; Zhi-Ming LI
National Journal of Andrology 2025;31(3):195-201
OBJECTIVE:
To explore the role of nuclear receptor-binding SET-domain protein 1 (NSD1) in the pathogenesis of nonobstructive azoospermia (NOA) by regulating the expressions of relevant genes.
METHODS:
We detected the expression of NSD1 in the testis tissue of 7 male patients with obstructive azoospermia (OA) and 18 with NOA by qPCR and immunofluorescence assay, and determined the modification level of H3K36me2 in the testes of two groups of patients by immunofluorescence staining, Western blot and immunoprecipitation (IP). We examined the difference in the enrichment of H3K36me2 in the testis tissue by chromatin IP-based sequencing (ChIP-Seq), analyzed the genomic distribution and target genes using bioinformatics, and verified the expression levels of the target genes in the testes of the two groups of patients by qPCR.
RESULTS:
Compared with the patients with OA, those with NOA showed dramatically decreased mRNA and protein expressions of NSD1 (P=0.000 8). The binding of NSD1 to H3K36me2 was observed in the testis tissue of both the two groups of patients, while the modification level of H3K36me2 was evidently reduced in the NOA males. H3K36me2 was distributed mainly in the intergenic region in the testes of the two groups of patients, but the enrichment of H3K36me2 was obviously decreased in the NOA group. The differentially H3K36me2-enriched genes were involved in various biological processes, including tissue development, and cell morphogenesis. Results of ChIP-Seq and qPCR showed significantly down-regulated expressions of the target genes KIT, SPO11 and ACRV1 in the testis tissue of the NOA males compared with those in the OA patients (P<0.01).
CONCLUSION
The levels of NSD1 and H3K36me2 are decreased in testis tissue of the NOA patient, H3K36me2 is highly enriched in the spermatogenesis-related key genes KIT, SPO11 and ACRV1, and the down-regulated expression of NSD1 impairs spermatogenesis.
Humans
;
Male
;
Azoospermia/genetics*
;
Testis/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Histones/metabolism*
9.Immunological mechanism of non-obstructive azoospermia: An exploration based on bioinformatics and machine learning.
Shu-Qiang HUANG ; Zhi-Hong LI ; Cui-Yu TAN ; Miao-Qi CHEN ; Xiao-Jun YUAN ; Wan-Ru CHEN ; Luo-Yao YANG ; Xu-Nuo FENG ; Cai-Rong CHEN ; Qiu-Xia YAN
National Journal of Andrology 2024;30(12):1059-1067
OBJECTIVE:
To explore the immunological mechanisms underlying spermatogenetic malfunction in patients with non-obstructive azoospermia (NOA) based on bioinformatics and machine learning, and to screen out the key genes associated with spermatogenesis failure.
METHODS:
NOA-related datasets were obtained from the GEO database, and the differentially expressed genes identified by differential analysis and weighted gene co-expression network analysis (WGCNA). A model of spermatogenesis scoring was established for analysis of the immunological microenvironment and cell interaction networks related to spermatogenesis failure. The key genes were screened out by machine learning, followed by analysis of their correlation with T cells and macrophages. An NOA mouse model was constructed for validation of transcriptome sequencing.
RESULTS:
Seventy-five differentially expressed genes were identified for the establishment of the spermatogenesis scoring model. The low spermatogenesis score group showed a higher infiltration of the immune cells, with an increased proportion of T cells and macrophages and a correlation of cell interaction signals with immunity. SOX30, KCTD19, ASRGL1 and DRC7 were identified by machine learning as the key genes related to spermatogenesis, with down-regulated expressions in the NOA group, and their expression levels negatively correlated with the infiltration of T cells and macrophages. The accuracy of the spermatogenesis scoring and machine learning models, as well as the trend of the expression levels of the key genes, was successfully validated with the transcriptome sequencing data on the NOA mouse testis.
CONCLUSION
The development of NOA is closely associated with enhanced immunological microenvironment in the testis. T cells and macrophages may play important roles in spermatogenesis failure. SOX30, KCTD19, ASRGL1 and DRC7 are potential biomarkers for the diagnosis and treatment of NOA.
Male
;
Azoospermia/genetics*
;
Machine Learning
;
Animals
;
Computational Biology
;
Mice
;
Humans
;
Spermatogenesis/genetics*
;
Gene Expression Profiling
;
Macrophages/immunology*
;
Gene Regulatory Networks
;
T-Lymphocytes/immunology*
;
Transcriptome
10.Incidence and genetic reproductive characteristics of AZFc microdeletion among patients with azoospermia or severe oligospermia.
Chiyan ZHOU ; Hui WANG ; Qin ZHU ; Luming WANG ; Binzhen ZHU ; Xiaodan LIU
Chinese Journal of Medical Genetics 2023;40(1):26-30
OBJECTIVE:
To explore the incidence of azoospermia factor c (AZFc) microdeletion among patients with azoospermia or severe oligospermia, its association with sex hormone/chromosomal karyotype, and its effect on the outcome of pregnancy following intracytoplasmic sperm injection (ICSI) treatment.
METHODS:
A total of 1 364 males with azoospermia or severe oligospermia who presented at the Affiliated Maternity and Child Health Care Hospital of Jiaxing College between 2013 and 2020 were subjected to AZF microdeletion and chromosome karyotyping analysis. The level of reproductive hormones in patients with AZFc deletions was compared with those of control groups A (with normal sperm indices) and B (azoospermia or severe oligospermia without AZFc microdeletion). The outcome of pregnancies for the AZFc-ICSI couples was compared with that of the control groups in regard to fertilization rate, superior embryo rate and clinical pregnancy rate.
RESULTS:
A total of 51 patients were found to harbor AZFc microdeletion, which yielded a detection rate of 3.74%. Seven patients also had chromosomal aberrations. Compared with control group A, patients with AZFc deletion had higher levels of PRL, FSH and LH (P < 0.05), whilst compared with control group B, only the PRL and FSH were increased (P < 0.05). Twenty two AZFc couples underwent ICSI treatment, and no significant difference was found in the rate of superior embryos and clinical pregnancy between the AZFc-ICSI couples and the control group (P > 0.05).
CONCLUSION
The incidence of AZFc microdeletion was 3.74% among patients with azoospermia or severe oligospermia. AZFc microdeletion was associated with chromosomal aberrations and increased levels of PRL, FSH and LH, but did not affect the clinical pregnancy rate after ICSI treatment.
Child
;
Humans
;
Male
;
Female
;
Pregnancy
;
Azoospermia/genetics*
;
Oligospermia/genetics*
;
Incidence
;
Chromosome Deletion
;
Chromosomes, Human, Y/genetics*
;
Semen
;
Infertility, Male/genetics*
;
Chromosome Aberrations
;
Follicle Stimulating Hormone/genetics*

Result Analysis
Print
Save
E-mail