1.Application and mechanisms of targeting BRD4 in osteosarcoma.
Ding CHEN ; Jiaming TIAN ; Yihe DONG ; Zi LI ; Jun HUANG
Journal of Central South University(Medical Sciences) 2025;50(3):416-429
OBJECTIVES:
Metastasis is the primary cause of death in osteosarcoma, and current clinical treatments remain limited. BRD4, a key epigenetic regulator, has shown therapeutic promise in various cancers through its inhibition. However, the mechanistic role of BRD4 in osteosarcoma remains poorly understood. This study aims to elucidate the molecular mechanisms by which BRD4 regulate osteosarcoma progression and to explore novel therapeutic strategies.
METHODS:
Immunofluorescence was used to assess BRD4 expression levels in a tissue microarray containing 80 osteosarcoma samples from different patients. The Gene Expression Omnibus (GEO) dataset (GSE42352, containing survival data from 88 osteosarcoma patients) was downloaded to perform Kaplan-Meier survival analysis based on BRD4 gene expression levels. In vivo, an orthotopic intramedullary osteosarcoma model was established using HOS cells in C57 mice, followed by treatment with varying doses of the BRD4 inhibitor (+)-JQ1. Micro-CT, 3D reconstruction of bone tissue, and HE staining were employed to evaluate pathological changes in bone and intestinal lymph nodes. In vitro, cell viability was measured using the methyl thiazolyl tetrazolium (MTT) assay, while colony formation and Transwell assays assessed proliferative and invasive capacities. Chromatin-bound BRD4 was analyzed via co-immunoprecipitation combined with mass spectrometry (Co-IP/MS), and O-GlcNAc glycosylation sites and glycan chains of BRD4 were identified using Co-IP with Nano-LC MS/MS. Real-time PCR and Western blotting were used to analyze the relative mRNA and protein expression levels of target genes, respectively.
RESULTS:
BRD4 was positively expressed in 61.25% (49/80) of osteosarcoma tissues. Patients with high BRD4 expression exhibited significantly shorter survival times (P<0.05). In the orthotopic mouse model, intervention with (+)-JQ1, a potent and commonly used BETi, significantly inhibited tumor growth in vivo and reduced bone destruction (P<0.05). (+)-JQ1 treatment significantly suppressed the proliferation (P<0.001), invasion (P<0.001), and migration (P<0.05) of HOS cells. In osteosarcoma cells, BRD4 exhibited O-GlcNAc modifications at both N- and C- C-termini, particularly at Thr73, which is essential for protein stability. This modification also contributed to the activation of the EGFR tyrosine kinase inhibitor resistance pathway (KEGG Pathway: hsa01521). (+)-JQ1 treatment displaced BRD4 from enhancers and downregulated the transcription of pathway-related genes, such as EGFR and PDGFC, thereby suppressing the malignant behavior of osteosarcoma cells.
CONCLUSIONS
BRD4 promotes osteosarcoma progression via O-GlcNAc modification at Thr73 and plays a crucial role in tumor growth and metastasis.
Osteosarcoma/drug therapy*
;
Humans
;
Transcription Factors/metabolism*
;
Animals
;
Cell Cycle Proteins
;
Mice
;
Bone Neoplasms/drug therapy*
;
Azepines/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Triazoles/pharmacology*
;
Mice, Inbred C57BL
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Male
;
Bromodomain Containing Proteins
2.Potential effect of endothelial progenitor cells on pentylenetetrazole-induced seizures in rats: an evaluation of relevant lncRNAs.
Shimaa O ALI ; Nancy N SHAHIN ; Marwa M SAFAR ; Sherine M RIZK
Journal of Zhejiang University. Science. B 2025;26(8):789-804
OBJECTIVES:
The use of stem cells is a promising strategy for seizure treatment owing to their unique characteristics. We investigated the role of endothelial progenitor cells (EPCs) in a pentylenetetrazole (PTZ)-induced rat seizure model. A selected panel of long noncoding RNAs (lncRNAs), which maintain an elaborate balance in brain neural regulatory networks as well as the autophagy pathway, was also targeted.
METHODS:
The impact of intravenously administered EPCs on PTZ-induced kindling in rats was evaluated by measuring the expression of neuronal damage markers, neurotrophic factors, and relevant lncRNA genes. Rat behavior was assessed using Y-maze test and open field test (OFT).
RESULTS:
EPCs mitigated seizure-associated neurological damage and reversed PTZ-induced working memory and locomotor activity deficits, as evidenced by improved performance in the Y-maze test and OFT. EPC treatment reversed the downregulation of the expression of the lncRNAs Evf2, Pnky, Dlx1, APF, HOTAIR, and FLJ11812. EPCs also boosted vascular endothelial growth factor (VEGF) expression. The ameliorative effect achieved by EPCs was comparable to that produced by valproate.
CONCLUSIONS
These findings indicate that EPCs ameliorate kindling epileptic seizures and their associated abnormalities and that the effect of EPCs may be mediated via the upregulation of certain regulatory lncRNAs.
Animals
;
Pentylenetetrazole
;
RNA, Long Noncoding
;
Seizures/therapy*
;
Rats
;
Male
;
Endothelial Progenitor Cells/transplantation*
;
Rats, Sprague-Dawley
;
Kindling, Neurologic
;
Vascular Endothelial Growth Factor A/metabolism*
;
Disease Models, Animal
3.Inhibition of BRD4 promotes migration of esophageal squamous cell carcinoma cells with low ACC1 expression.
Wenxin JIA ; Shuhua HUO ; Jiaping TANG ; Yuzhen LIU ; Baosheng ZHAO
Journal of Southern Medical University 2025;45(10):2258-2269
OBJECTIVES:
To investigate the effect of BRD4 inhibition on migration of esophageal squamous cell carcinoma (ESCC) cells with low acetyl-CoA carboxylase 1 (ACC1) expression.
METHODS:
ESCC cell lines with lentivirus-mediated ACC1 knockdown or transfected with a negative control sequence (shNC) were treated with DMSO, JQ1 (a BRD4 inhibitor), co-transfection with shNC-siBRD4 or siNC with additional DMSO or C646 (an ahistone acetyltransferase inhibitor) treatment, or JQ1combined with 3-MA (an autophagy inhibitor). BRD4 mRNA expression in the cells was detected using RT-qPCR. The changes in cell proliferation, migration, autophagy, and epithelial-mesenchymal transition (EMT) were examined with CCK8 assay, Transwell migration assay, and Western blotting.
RESULTS:
ACC1 knockdown did not significantly affect BRD4 expression in the cells but obviously increased their sensitivity to JQ1. JQ1 treatment at 1 and 2 μmol/L significantly inhibited ESCC cell proliferation, while JQ1 at 0.2 and 2 μmol/L promoted cell migration. The cells with ACC1 knockdown and JQ1 treatment showed increased expresisons of vimentin and Slug and decreased expression of E-cadherin. BRD4 knockdown promoted migration of ESCC cells, and co-transfection with shACC1 and siBRD4 resulted in increased vimentin and Slug expressions and decreased E-cadherin expression in the cells. C646 treatment of the co-transfected cells reduced acetylation levels, decreased vimentin and Slug expressions, and increased E-cadherin expression. Treatment with JQ1 alone obviously increased LC3A/B-II levels in the cells either with or without ACC1 knockdown. In the cells with ACC1 knockdown and JQ1 treatment, additional 3-MA treatment significantly decreased the expressions of vimentin, Slug and LC3A/B-II and increased the expression of E-cadherin.
CONCLUSIONS
BRD4 inhibition promotes autophagy of ESCC cells via a histone acetylation-dependent mechanism, thereby enhancing EMT and ultimately increasing cell migration driven by ACC1 deficiency.
Humans
;
Cell Movement
;
Transcription Factors/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Cell Cycle Proteins
;
Azepines/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Carcinoma, Squamous Cell/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Triazoles/pharmacology*
;
Nuclear Proteins/genetics*
;
Cell Proliferation
;
Acetyl-CoA Carboxylase/genetics*
;
Transfection
;
Autophagy
;
Bromodomain Containing Proteins
4.Targeting microRNA-125b inhibited the metastasis of Alisertib resistance cells through mediating p53 pathway.
Fu Li YANG ; Xin CHEN ; Fei ZHENG ; Xiang ye LIU ; Na SUN ; Rong Qing LI ; Zhen JIANG ; Jing HAN ; Jing YANG
Chinese Journal of Oncology 2023;45(6):499-507
Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.
Animals
;
Female
;
Mice
;
Azepines
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Tumor Suppressor Protein p53/genetics*
;
Humans
;
Drug Resistance, Neoplasm
5.Effects of BET Bromodomain Inhibitor JQ1 on Double-Expressor Lymphoma Cell Lines and Its Mechanism.
Xue-Yu CHEN ; Xue YAN ; Bin-Yang SONG ; Jian SUN ; Li-Jun MU ; Wei-Ping LI
Journal of Experimental Hematology 2022;30(4):1094-1100
OBJECTIVE:
To investigate the effects and mechanism of bromodomain and extra-terminal (BET) inhibitor JQ1 on the double-expressor lymphoma (DEL) cell lines.
METHODS:
Protein expressions of cMyc and BCL-2 in 3 lymphoma cell lines were checked by Western blot so as to identify DEL cell lines. CCK-8 assay was used to detect the effects of JQ1 on anti-proliferation in the DEL cell lines. Western blot and RT-PCR were used to measure the protein and mRNA expressions of cMyc, BCL-2 and BCL-6 in DEL cell lines which treated by JQ1. Flow cytometry was used to detect the effect of JQ1 on cell apoptosis.
RESULTS:
Based on the expressions of cMyc and BCL-2, the SU-DHL6 and OCILY3 cell lines were confirmed as DEL cell lines. CCK-8 assay showed that the proliferation of DEL cell lines was inhibited by JQ1, which was similar to non-DEL cell lines and mainly regulated the expression of cMyc and BCL-6 but not BCL-2. JQ1 had no effects on apoptosis in the DEL cell lines.
CONCLUSION
BET inhibitor JQ1 has anti-tumor effect in the DEL cell lines, thus providing evidence for the therapeutic potential of BET inhibitor JQ1.
Apoptosis
;
Azepines/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Sincalide/pharmacology*
;
Triazoles/pharmacology*
;
Xenograft Model Antitumor Assays
6.Regulatory mechanism of MS275 on the p38 MAPK signaling pathway in rats with convulsion in the developmental stage.
Fang PENG ; Qing-Peng HU ; Xiang-Yi HUANG
Chinese Journal of Contemporary Pediatrics 2020;22(8):909-915
OBJECTIVE:
To study the regulatory mechanism of MS275, a histone deacetylase inhibitor, on the p38 MAPK signaling pathway in rats with convulsion in the developmental stage.
METHODS:
Thirty-two male rats were randomly divided into four groups: control, pentylenetetrazol (PTZ), PTZ+3 mg/kg MS275, and PTZ+6 mg/kg MS275 (n=8 each). A rat model of convulsion in the developmental stage was prepared by an intraperitoneal injection of PTZ. The rats in the control group were given an injection of normal saline alone. MS275 was given by an intraperitoneal injection at 2 hours before PTZ injection. At 24 hours after successful modeling, 6 rats were taken from each group. Western blot and qRT-PCR were used to measure the protein and mRNA expression of p38, MK2, cAMP response element-binding protein (CREB), and interleukin-6 (IL-6) in the hippocampus. Hematoxylin-eosin (HE) staining was used to observe brain pathological changes. Western blot was used to measure the expression of CD11b as a marker for the activation of microglial cells.
RESULTS:
Compared with the control group, the PTZ group had significant increases in the mRNA and protein expression of p38, MK2, CREB, and IL-6 (P<0.05). MS275 significantly inhibited the mRNA and protein expression of the above markers in the rats with convulsion in the developmental stage (P<0.05), and 6 mg/kg MS275 had a significantly better inhibitory effect on the mRNA and protein expression of IL-6 and CREB than 3 mg/kg MS275 (P<0.05). HE staining showed that the PTZ group had marked neuron apoptosis, cellular edema, and inflammatory cell infiltration, while MS275 intervention alleviated neuron apoptosis and cellular edema and reduced inflammatory cell infiltration in the rats with convulsion. The PTZ group had a significant increase in the activation of microglial cells, while MS275 significantly inhibited the activation of microglial cells in the rats with convulsion (P<0.05); 6 mg/kg MS275 had a significantly better inhibitory effect than 3 mg/kg MS275 (P<0.05).
CONCLUSIONS
In rats with convulsion in the developmental stage, the histone deacetylase inhibitor MS275 can inhibit the p38 MAPK signaling pathway, the apoptosis of hippocampal neurons, and the activation of microglial cells and thus reduce inflammatory response and convulsion-induced brain injury in a dose-dependent manner.
Animals
;
Male
;
Pentylenetetrazole
;
Rats
;
Rats, Sprague-Dawley
;
Seizures
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
7.Identification of Tiletamine, Zolazepam and Their Metabolites in Drug Facilitated Sexual Assault by GC-QTOF-MS.
Si Yang HE ; Fei Jun GONG ; Ru LIAN ; Zhen Hai SHENG ; Jin Lun XU ; Wen Juan SUN ; Shui Qing ZHENG
Journal of Forensic Medicine 2019;35(5):581-585
Objective To identify tiletamine, zolazepam and their metabolites in samples from drug facilitated sexual assault by gas chromatography-quadrupole time of flight mass spectrometry (GC-QTOF-MS). Methods Urine samples of victims were collected, and detected by GC-QTOF-MS after liquid-liquid extraction and concentration. The molecular formula of fragments ions was identified by determination of accurate mass numbers, to detect related substances. Results Tiletamine, zolazepam, three metabolites of tiletamine and two metabolites of zolazepam were identified in urine samples from actual cases. Conclusion GC-QTOF-MS provides abundant and accurate information of fragment ions mass numbers, which can be used for qualitative identification of tiletamine, zolazepam and their metabolites in drug facilitated sexual assault.
Chromatography, High Pressure Liquid/methods*
;
Forensic Toxicology/methods*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Humans
;
Sex Offenses
;
Tandem Mass Spectrometry/methods*
;
Tiletamine/blood*
;
Zolazepam/blood*
8.BRD4 interacts with PML/RARα in acute promyelocytic leukemia.
Qun LUO ; Wanglong DENG ; Haiwei WANG ; Huiyong FAN ; Ji ZHANG
Frontiers of Medicine 2018;12(6):726-734
Bromodomain-containing 4 (BRD4) has been considered as an important requirement for disease maintenance and an attractive therapeutic target for cancer therapy. This protein can be targeted by JQ1, a selective small-molecule inhibitor. However, few studies have investigated whether BRD4 influenced acute promyelocytic leukemia (APL), and whether BRD4 had interaction with promyelocytic leukemia-retinoic acid receptor α (PML/RARα) fusion protein to some extent. Results from cell viability assay, cell cycle analysis, and Annexin-V/PI analysis indicated that JQ1 inhibited the growth of NB4 cells, an APL-derived cell line, and induced NB4 cell cycle arrest at G1 and apoptosis. Then, we used co-immunoprecipitation (co-IP) assay and immunoblot to demonstrate the endogenous interaction of BRD4 and PML/RARα in NB4 cells. Moreover, downregulation of PML/RARα at the mRNA and protein levels was observed upon JQ1 treatment. Furthermore, results from the RT-qPCR, ChIP-qPCR, and re-ChIP-qPCR assays showed that BRD4 and PML/RARα co-existed on the same regulatory regions of their target genes. Hence, we showed a new discovery of the interaction of BRD4 and PML/RARα, as well as the decline of PML/RARα expression, under JQ1 treatment.
Apoptosis
;
drug effects
;
Azepines
;
pharmacology
;
Cell Differentiation
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Leukemia, Promyelocytic, Acute
;
drug therapy
;
genetics
;
Nuclear Proteins
;
genetics
;
Promyelocytic Leukemia Protein
;
genetics
;
RNA, Messenger
;
genetics
;
Retinoic Acid Receptor alpha
;
genetics
;
Transcription Factors
;
genetics
;
Triazoles
;
pharmacology
;
Tumor Cells, Cultured
9.Effect of JQ1 on expression of autoimmune-related genes in CD4+T cells of systemic lupus erythematosus.
Xiaofei GAO ; Keqin GAO ; Jiali WU ; Ming ZHAO
Journal of Central South University(Medical Sciences) 2018;43(7):704-710
To investigate the effect of bromodomain and extra-terminal (BET) protein inhibitor JQ1 on expression of autoimmune-related genes in CD4+T cells from patients with systemic lupus erythematosus (SLE).
Methods: Peripheral CD4+T cells were isolated by positive selection with CD4 microbeads. The percentage of CD4+T cells were detected by flow cytometry. CD4+T cells were treated by JQ1 at 100 nm/L for 6, 24, 48 h. The expression of T cell-related genes was measured by quantitative real-time PCR (qPCR). The secretion levels of cytokines in culture supernatant were measured by ELISA at 48 h.
Results: The percentage of CD4+T cells isolated by CD4 microbeads is 97.2%. Compared with the control group, the mRNA expression levels of IFNG, IL-17F, IL-21, CXCR5 and FOXP3 were down-regulated at 6, 24 and 48 h (P<0.05), and IL-17A mRNA level was decreased at 6 and 24 h (P<0.01); while IL-4 mRNA level was up-regulated at 24, 48 h (P<0.01), and TGF-β1 mRNA level was up-regulated at 6 and 48 h (P<0.05) in SLE CD4+T cells treated with JQ1. The secretion levels of IFN-γ and IL-21 in JQ1-treated group were decreased significantly (P<0.05), while the secretion levels of IL-4 and TGF-β were up-regulated compared with control group (P<0.05).
Conclusion: JQ1 can reverse the immune dysregulation and improve the immunity homeostasis in CD4+T cells from patients with SLE.
Azepines
;
pharmacology
;
CD4 Lymphocyte Count
;
CD4-Positive T-Lymphocytes
;
cytology
;
drug effects
;
metabolism
;
Cytokines
;
analysis
;
metabolism
;
Flow Cytometry
;
Humans
;
Interferon-gamma
;
metabolism
;
Lupus Erythematosus, Systemic
;
immunology
;
metabolism
;
Proteins
;
antagonists & inhibitors
;
RNA, Messenger
;
metabolism
;
Time Factors
;
Transforming Growth Factor beta1
;
Triazoles
;
pharmacology
10.Mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
Xiao-Hua ZHU ; Qiu-Gen LI ; Jun WANG ; Guo-Zhu HU ; Zhi-Qiang LIU ; Qing-Hua HU ; Gang WU
Chinese Journal of Contemporary Pediatrics 2017;19(12):1278-1284
OBJECTIVETo investigate the molecular mechanism of action of BET bromodomain inhibitor JQ1 in treating airway remodeling in asthmatic mice.
METHODSA total of 24 mice were randomly divided into control group, ovalbumin (OVA)-induced asthma group (OVA group), and JQ1 intervention group (JQ1+OVA group), with 8 mice in each group. OVA sensitization/challenge was performed to establish a mouse model of asthma. At 1 hour before challenge, the mice in the JQ1+OVA group were given intraperitoneal injection of JQ1 solution (50 μg/g). Bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected at 24 hours after the last challenge, and the total number of cells and percentage of eosinophils in BALF were calculated. Pathological staining was performed to observe histopathological changes in lung tissue. RT-PCR and Western blot were used to measure the mRNA and protein expression of E-cadherin and vimentin during epithelial-mesenchymal transition (EMT).
RESULTSCompared with the control group, the OVA group had marked infiltration of inflammatory cells in the airway, thickening of the airway wall, increased secretion of mucus, and increases in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the OVA group, the JQ1+OVA group had significantly alleviated airway inflammatory response and significant reductions in the total number of cells and percentage of eosinophils in BALF (P<0.01). Compared with the control group, the OVA group had significant reductions in the mRNA and protein expression of E-cadherin and significant increases in the mRNA and protein expression of vimentin (P<0.01); compared with the OVA group, the JQ1+OVA group had significant increases in the mRNA and protein expression of E-cadherin and significant reductions in the mRNA and protein expression of vimentin (P<0.01); there were no significant differences in these indices between the JQ1+OVA group and the control group (P>0.05).
CONCLUSIONSMice with OVA-induced asthma have airway remodeling during EMT. BET bromodomain inhibitor JQ1 can reduce airway inflammation, inhibit EMT, and alleviate airway remodeling, which provides a new direction for the treatment of asthma.
Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; Azepines ; pharmacology ; Cadherins ; analysis ; genetics ; Epithelial-Mesenchymal Transition ; Female ; Mice ; Nuclear Proteins ; antagonists & inhibitors ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Transcription Factors ; antagonists & inhibitors ; Triazoles ; pharmacology ; Vimentin ; analysis ; genetics

Result Analysis
Print
Save
E-mail