1.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
2.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
3.The regulatory effect and mechanism of PGC-1α on mitochondrial function.
Song-Hua NAN ; Chao-Jie PENG ; Ying-Lin CUI
Acta Physiologica Sinica 2025;77(2):300-308
Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) is a core member of the PGC-1 family and serves as a transcriptional coactivator, playing a crucial regulatory role in various diseases. Mitochondria, the main site of cellular energy metabolism, are essential for maintaining cell growth and function. Their function is regulated by various transcription factors and coactivators. PGC-1α regulates the biogenesis, dynamics, energy metabolism, calcium homeostasis, and autophagy processes of mitochondria by interacting with multiple nuclear transcription factors, thereby exerting significant effects on mitochondrial function. This review explores the biological functions of PGC-1α and its regulatory effects and related mechanisms on mitochondria, providing important information for our in-depth understanding of the role of PGC-1α in cellular metabolism. The potential role of PGC-1α in metabolic diseases, cardiovascular diseases, and neurodegenerative diseases was also discussed, providing a theoretical basis for the development of new treatment strategies.
Humans
;
Mitochondria/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology*
;
Animals
;
Energy Metabolism/physiology*
;
Neurodegenerative Diseases/physiopathology*
;
Autophagy/physiology*
;
Transcription Factors/physiology*
;
Metabolic Diseases/physiopathology*
;
Cardiovascular Diseases/physiopathology*
4.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
5.miR-207 targets autophagy-associated protein LAMP2 to regulate the mechanism of macrophage-mycobacterium tuberculosis interaction.
Wenya DU ; Yumei DAI ; Linzhi YUE ; Tao MA ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):97-104
Objectives miR-207 has been identified as being expressed in natural killer (NK) cell exosomes that play a role in disease progression; however, to date, there are no studies specifically linking miR-207 to tuberculosis (TB). Methods Bioinformatics methods employed for prediction, followed by a dual luciferase reporter assay to determine whether lysosome-associated membrane protein 2 (LAMP2) is targeted by miR-207. The experiments were divided into four groups using the liposome transfection method (OP-LAMP2 group: co-transfected with miR-207 mimics and LAMP2 overexpression plasmid; EP group: co-transfected with mimics NC and null-loaded plasmid; siLAMP2 group: transfected with siLAMP2; and siLAMP2-NC group: transfected with siLAMP2-NC). TB infection was modeled using H37Ra-infected Ana-1 cells. The impact of LAMP2 on intracellular mycobacterial load and clearance of extracellular residual mycobacteria were assessed by tuberculosis colony-forming unit counting. Flow cytometry was used to assess the total apoptosis rate. Real-time fluorescent quantitative PCR was conducted to determine the relative expression of LAMP2, apoptosis genes, pyroptosis genes, and autophagy genes. Western blot analysis was performed to measure the relative expression of LAMP2 proteins, apoptosis proteins, pyroptosis proteins, and autophagy proteins. Results Dual luciferase reporter assay test showed that there was a targeting relationship between LAMP2 and miR-207. The transfection model was successfully constructed under real-time fluorescent quantitative PCR and Western blot statistical analysis, and microscopic observation. The infection model was successfully established under microscopic observation. Colony forming unit counting revealed that the number of colonies in the OP-LAMP2 group was lower than that in the EP group, while the number of colonies in the siLAMP2 group was higher than that in the siLAMP2-NC group. Flow cytometry assay revealed that the total apoptosis in OP-LAMP2 group was lower than that in EP group, and the total apoptosis in siLAMP2 group was higher than that in siLAMP2-NC group. Real-time fluorescence quantitative PCR and Western blot analysis revealed that the relative expression of apoptosis and pyroptosis-related proteins and genes in the control group was lower in the OP-LAMP2 group compared to the EP group, and higher in the siLAMP2 group compared to the siLAMP2-NC group. Real-time fluorescence quantitative PCR detected that the relative expression of autophagy positively regulated genes Microtubule-associated protein 1 light chain 3(LC3)and Beclin1 in the OP-LAMP2 group was higher in the OP-LAMP2 group compared to the EP group, and lower in the siLAMP2 group compared to the siLAMP2-NC group, while the relative expression of negatively regulated autophagy genes followed the opposite trend to that of autophagy positively regulated genes. The relative expression of autophagy-related proteins was consistent with the trend of autophagy genes. Conclusions miR-207 enhances macrophage apoptosis, cellular pyroptosis and inhibits autophagy, promoting survival of Mycobacterium tuberculosis by targeting the autophagy-related protein LAMP2, thus offering a novel therapeutic direction for tuberculosis.
Lysosomal-Associated Membrane Protein 2/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Autophagy/genetics*
;
Humans
;
Macrophages/metabolism*
;
Apoptosis/genetics*
;
Tuberculosis/metabolism*
;
Cell Line
;
Pyroptosis/genetics*
6.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
7.Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis.
Pei-Yue LUO ; Jun-Rong ZOU ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Li-Ying ZHENG ; Biao QIAN
Asian Journal of Andrology 2025;27(2):166-176
In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Male
;
Humans
;
Autophagy/physiology*
;
Apoptosis/physiology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Penis/pathology*
;
Animals
;
Endothelial Cells/pathology*
;
Myocytes, Smooth Muscle/pathology*
8.MiR-224-5p regulates chemoresistance in colorectal cancer via Bcl-2-mediated autophagy.
Hui ZHOU ; Meng WU ; Shaihong ZHU ; Yi ZHANG
Journal of Central South University(Medical Sciences) 2025;50(2):190-203
OBJECTIVES:
Oxaliplatin (OXA) and 5-fluorouracil (5-FU) are 2 commonly used chemotherapeutic agents for colorectal cancer (CRC). MicroRNAs (miRNAs, miRs) play crucial roles in the development of chemoresistance in various cancers. However, the role and mechanism of miR-224-5p in regulating CRC chemoresistance remain unclear. This study aims to investigate the function of miR-224-5p in chemoresistant CRC cells and the underlying mechanisms.
METHODS:
CRC datasets GSE28702 and GSE69657 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs between drug-sensitive and resistant groups (OXA or 5-FU) were analyzed, and miR-224-5p was identified as the target miRNA. Chemoresistant cell lines HCT15-OXR, HCT15-5-FU, SW480-OXR, and SW480-5-FU were established. Transient transfections were performed using miR-224-5p mimics, inhibitors, and their respective negative controls (control mimic, control inhibitor) in these cell lines. Cells were treated with different concentrations of OXA or 5-FU post-transfection, and the half-maximal inhibitory concentration (IC50) was determined using the cell counting kit-8 (CCK-8) assay. Cell proliferation was assessed by CCK-8 and colony formation assays. The expression levels of miR-224-5p, LC3, and P62 were measured by real-time polymerase chain reaction (real-time PCR) and/or Western blotting. Autophagic flux was assessed using a tandem fluorescent-tagged LC3 reporter assay. TargetScan 8.0, miRTarBase, miRPathDB, and HADb were used to predict B-cell lymphoma-2 (Bcl-2) as a potential miR-244-5p target, which was further validated by dual-luciferase reporter assays.
RESULTS:
Chemoresistant CRC cells exhibited down-regulated miR-224-5p expression, whereas up-regulation of miR-224-5p enhanced chemotherapy sensitivity. Exposure to OXA or 5-FU significantly increased autophagic activity in chemoresistant CRC cells, which was reversed by miR-224-5p overexpression. Dual-luciferase assays verified Bcl-2 as a direct target of miR-224-5p.
CONCLUSIONS
MiR-224-5p regulates chemoresistance in CRC by modulating autophagy through direct targeting of Bcl-2.
Humans
;
MicroRNAs/physiology*
;
Colorectal Neoplasms/drug therapy*
;
Drug Resistance, Neoplasm/genetics*
;
Autophagy/drug effects*
;
Fluorouracil/pharmacology*
;
Oxaliplatin
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Gene Expression Regulation, Neoplastic
9.Role of telomerase in the onset and treatment of gastric cancer.
Gang CHEN ; Minmin ZHANG ; Yulu WANG ; Yumin LI ; Junmin ZHU
Journal of Central South University(Medical Sciences) 2025;50(2):259-265
China is a high-incidence region for gastric cancer globally. The disease is characterized by a high morbidity rate, low early diagnostic rate, and poor long-term outcomes, imposing a significant burden on both patients and society. Therefore, exploring the pathogenesis of gastric cancer, developing novel therapeutic strategies, and identifying new drug targets is of great importance. Telomerase expression is broadly associated with cancer cell targeting, and its up-regulation is one of the key factors driving the initiation and progression of gastric cancer. Additionally, telomerase is intricately involved in the regulation of autophagy and autophagy-associated cell death. While autophagy can induce chemoresistance, excessive autophagy may lead to cell death, which also constitutes one of the mechanisms of chemotherapy. Telomerase not only directly contributes to gastric cancer pathogenesis but also indirectly influences its development and treatment by modulating autophagy and autophagic cell death. Therefore, telomerase holds promise as a novel therapeutic target in gastric cancer.
Humans
;
Stomach Neoplasms/genetics*
;
Telomerase/genetics*
;
Autophagy/physiology*
10.Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives.
Xiaoyu HAN ; Peijun LI ; Meiling JIANG ; Yuanyuan CAO ; Yingqi WANG ; Linhong JIANG ; Xiaodan LIU ; Weibing WU
Journal of Zhejiang University. Science. B 2025;26(3):227-239
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
Pulmonary Disease, Chronic Obstructive/physiopathology*
;
Autophagy/physiology*
;
Humans
;
Muscle, Skeletal/pathology*
;
Mitophagy
;
Animals
;
Mitochondria/metabolism*
;
Lysosomes

Result Analysis
Print
Save
E-mail