1.Research progress of nucleus tractus solitarius involved in central regulation of hypertension.
Yu TIAN ; Na LI ; Yi ZHANG ; Hong-Jie WANG
Acta Physiologica Sinica 2025;77(1):85-94
The nucleus tractus solitarius (NTS) is the primary brain region for receiving and integrating cardiovascular afferent signals. It plays a crucial role in maintaining balance of autonomic nervous system and regulating blood pressure through cardiovascular reflexes. Neurons within the NTS form complex synaptic connections and interact reciprocally with other brain regions. The NTS regulates autonomic nervous system activity and arterial blood pressure through modulating baroreflex, sympathetic nerve activity, renin-angiotensin-aldosterone system, and oxidative stress. Dysfunctions in NTS activity may contribute to hypertension. Understanding the NTS' role in centrally regulating blood pressure and alterations of neurotransmission or signaling pathways in the NTS may provide rationale for new therapeutic strategies of prevention and treatment. This review summarizes the research findings on autonomic nervous system regulation and arterial blood pressure control by NTS, as well as unresolved questions, in order to provide reference for future investigation.
Solitary Nucleus/physiopathology*
;
Hypertension/physiopathology*
;
Humans
;
Animals
;
Autonomic Nervous System/physiopathology*
;
Blood Pressure/physiology*
;
Baroreflex/physiology*
;
Renin-Angiotensin System/physiology*
;
Sympathetic Nervous System/physiology*
2.Hypno-cardiac physiology: Aiming for an organised study of the physiological effects of hypnosis on the cardiovascular system.
Donato Giuseppe LEO ; Simon S KELLER ; Riccardo PROIETTI
Journal of Integrative Medicine 2025;23(5):457-461
Hypnosis is a promising tool in the management of various conditions, such as anxiety and chronic pain. Preliminary studies have shown that hypnosis can directly affect the cardiovascular system, as it increases parasympathetic activation and reduces sympathetic activity. However, the literature related to the effects of hypnosis on cardiovascular health is scarce, mainly due to misconceptions about hypnosis among researchers and medical professionals. This opinion paper examines the role that hypnosis may play in cardiovascular health, highlighting the physiological mechanisms behind it. The evidence suggests that hypnosis has both direct (e.g., changes in the activity of the autonomic nervous system) and indirect (e.g., changes in healthy behaviours) effects on the cardiovascular system; however, further studies are needed to properly define its mechanisms of action and its applicability in improving cardiovascular health. Thus, this opinion paper advocates the adoption of the term "hypno-cardiac physiology" to identify a new research area that gathers experts from neuroscience and cardiovascular science with the joint aim of seeking further understanding of the effects of hypnosis on the cardiovascular system. The adoption of a dedicated term to identify the study of the cardiovascular response to hypnosis will encourage its implementation in cardiovascular health interventions, promoting awareness of its effects among the public and the healthcare community, and promoting the formation of dedicated multidisciplinary research groups and dedicated educational training for healthcare professional interested in its applications. Please cite this article as: Leo DG, Keller SS, Proietti R. Hypno-cardiac physiology: Aiming for an organised study of the physiological effects of hypnosis on the cardiovascular system. J Integr Med. 2025; 23(5):457-461.
Humans
;
Autonomic Nervous System/physiology*
;
Cardiovascular Physiological Phenomena
;
Cardiovascular System/physiopathology*
;
Hypnosis
3.Research Progress of Autonomic Nerve Regulation in the Treatment of Myocardial Infarction.
Shan-Shan LI ; Meng-Ting XIONG ; Miao-Miao GUO
Acta Academiae Medicinae Sinicae 2025;47(2):309-313
The autonomic nervous system imbalance caused by the overactivation of the sympathetic nerve and the weakened activity of the parasympathetic nerve is closely related to the occurrence and development of myocardial infarction.Autonomic nerve regulation is a new therapeutic approach aiming at inhibiting sympathetic activity and increasing parasympathetic activity.It encompasses magnetic nerve stimulation,optogenetic neuromodulation,and microinjection of botulinum toxin,which could promote the rebalance of the autonomic nervous system,thereby curbing the deterioration of the cardiac function and reducing the occurrence of ventricular arrhythmias after myocardial infarction.This paper reviews the anatomical basis,mechanisms of action,and research advances in intervention strategies of the autonomic nervous system in myocardial infarction.
Humans
;
Myocardial Infarction/physiopathology*
;
Autonomic Nervous System/physiopathology*
;
Autonomic Pathways
5.Autonomic Disturbances in Acute Cerebrovascular Disease.
Jun MO ; Lei HUANG ; Jianhua PENG ; Umut OCAK ; Jianmin ZHANG ; John H ZHANG
Neuroscience Bulletin 2019;35(1):133-144
Autonomic disturbances often occur in patients with acute cerebrovascular disease due to damage of the central autonomic network. We summarize the structures of the central autonomic network and the clinical tests used to evaluate the functions of the autonomic nervous system. We review the clinical and experimental findings as well as management strategies of post-stroke autonomic disturbances including electrocardiographic changes, cardiac arrhythmias, myocardial damage, thermoregulatory dysfunction, gastrointestinal dysfunction, urinary incontinence, sexual disorders, and hyperglycemia. The occurrence of autonomic disturbances has been associated with poor outcomes in stroke patients. Autonomic nervous system modulation appears to be an emerging therapeutic strategy for stroke management in addition to treatments for sensorimotor dysfunction.
Acute Disease
;
Animals
;
Autonomic Nervous System
;
physiopathology
;
Cerebrovascular Disorders
;
complications
;
physiopathology
;
Humans
;
Nerve Net
;
injuries
;
Sensorimotor Cortex
;
physiopathology
;
Stroke
;
physiopathology
6.Research advances of autonomic nervous system in the regulation of cardiac inflammation.
Ye-Nan FENG ; Han XIAO ; You-Yi ZHANG
Acta Physiologica Sinica 2019;71(2):225-234
The autonomic nervous system consists of the sympathetic nervous system and the parasympathetic nervous system. These two systems control the heart and work in a reciprocal fashion to modulate myocardial energy metabolism, heart rate as well as blood pressure. Multiple cardiac pathological conditions are accompanied by autonomic imbalance, characterized by sympathetic overactivation and parasympathetic inhibition. Studies have shown that overactive sympathetic nervous system leads to increased cardiac inflammatory reaction. Orchestrated inflammatory response serves to clear dead cardiac tissue and activate reparative process, whereas excessive inflammation may result in pathological cardiac remodeling. Since the discovery of the α7 nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic anti-inflammatory pathway (CAP), the protective effects of the parasympathetic nervous system in cardiac inflammation have attracted more attention recently. In this review, we summarized the role and underlying mechanisms of the sympathetic and parasympathetic nervous systems in cardiac inflammation, in order to provide new insight into cardiac inflammatory response in cardiovascular diseases.
Autonomic Nervous System
;
physiology
;
Heart
;
physiopathology
;
Humans
;
Inflammation
;
physiopathology
;
Parasympathetic Nervous System
;
physiology
;
alpha7 Nicotinic Acetylcholine Receptor
;
physiology
7.An increase in heart rate variability can be an index for end point of resuscitation in trauma patients.
Ali FOROUTAN ; Shahram PAYDAR ; Seyyed Taghi HEYDARI ; Leila MOHAMMADI ; Farnaz RAHBAR
Chinese Journal of Traumatology 2019;22(3):134-137
PURPOSE:
The measurement of heart rate variability (HRV) is a non-invasive method to analyze the balance of the autonomic nervous system. The aim of this study was to compare the changes of HRV and base deficit (BD) during the treatment of trauma patients.
METHODS:
Forty-three trauma patients with a low injury severity scores (ISS < 24) and negative base excess on admission were included in this study. Based on the BD changes, patients were divided into three groups: 'end pointed' group (n = 13), patients' BDs instantly cleared after primary hydration; 'needs further resuscitation' group (n = 21), patients' BDs did not reach the end point and thus required further hydration or packed red blood cells transfusion; and 'hydration minimal change' group (n = 9), patients' BDs lower than 2.5 mmol/L at the onset of admission and thereafter had minimal change (near normal range). The changes in HRV during fluid resuscitation were detected and compared to BD changes in their arterial blood gases. All data were analysed using the SPSS software Version 15.0. Repeated measures ANOVA was used to determine the changes in HRV, heart rate, blood pressure, and BD among groups.
RESULTS:
A significant reverse correlation was found between the BD ratio and the HRV ratio (r = -0.562; p = 0.01). The HRV of patients with aggravated BDs after fluid resuscitation was decreased. There was an increase in HRV at the time of BD clearance. A decrease in HRV after primary crystalloid hydration bore a significant connection with the need for an ICU (p = 0.021) and transfusion of packed red blood cells (p < 0.001).
CONCLUSION
Increase in HRV may be a new non-invasive index for the end point of resuscitation in trauma patients.
Adolescent
;
Adult
;
Aged
;
Autonomic Nervous System
;
physiopathology
;
Crystalloid Solutions
;
administration & dosage
;
Fluid Therapy
;
Heart Rate
;
Humans
;
Injury Severity Score
;
Middle Aged
;
Resuscitation
;
methods
;
Wounds and Injuries
;
diagnosis
;
physiopathology
;
Young Adult
8.Cardiac autonomic nerve function in obese school-age children.
Lan-Fen YI ; Hong-Xia WEN ; Xiao-Li HUANG ; Mei QIU ; Xiao-Xiao CAO
Chinese Journal of Contemporary Pediatrics 2017;19(5):524-528
OBJECTIVETo analyze the deceleration capacity (DC) of heart rate, acceleration capacity (AC) of heart rate, and heat rate variability (HRV) in obese school-age children, and to observe the correlations of BMI with DC, AC, and HRV in these children.
METHODSA total of 108 obese school-age children were selected, including 75 cases of ortholiposis and 33 cases of dyslipidemia. A total of 103 healthy school-age children were selected as control group. All the subjects underwent 24-hour ambulatory electrocardiography. The comparisons of DC, AC, and HRV were made between the obese and control groups, as well as between children with ortholiposis and dyslipidemia in the obese group. The correlations of BMI with DC, AC, and HRV were analyzed in the obese group.
RESULTSThe obese group showed lower DC, standard deviation of normal-to-normal R-R intervals (SDNN), standard deviation of the average normal-to-normal intervals (SDANN), root mean square of successive differences (RMSSD), low-frequency power (LF), and high-frequency power (HF) than the control group. The AC of the obese group was significantly higher than that of the control group (P<0.05). In the obese group, children with dyslipidemia had significantly lower DC, SDNN, SDANN, RMSSD, LF, and HF, but significantly higher AC and BMI, as compared with those with ortholiposis (P<0.01). In the obese group, BMI was negatively correlated with DC, SDNN, SDANN, RMSSD, and HF (P<0.05), but positively correlated with AC (P<0.05).
CONCLUSIONSObese school-age children have impaired autonomic nerve function, presenting with reduced vagal tone, which is particularly prominent in those with dyslipidemia. The more obese the children, the lower the vagal tone, which may increase the risks of cardiovascular diseases.
Autonomic Nervous System ; physiopathology ; Child ; Female ; Heart ; innervation ; Heart Rate ; Humans ; Insulin Resistance ; Male ; Obesity ; complications ; physiopathology
9.An analysis of cardiac autonomic nerve function in girls with idiopathic central precocious puberty.
Lan-Fen YI ; Hong-Xia WEN ; Mei QIU ; Xiao-Xiao CAO
Chinese Journal of Contemporary Pediatrics 2017;19(12):1239-1242
OBJECTIVETo investigate the cardiac autonomic nerve function in girls with idiopathic central precocious puberty (ICPP).
METHODSA total of 66 girls with ICPP were enrolled, among whom 36 were obese and 30 were not obese. A total of 68 age-matched healthy girls (normal controls) and 51 girls with simple obesity were enrolled as controls. All the subjects underwent 24-hour ambulatory electrocardiography, and deceleration capacity of heart rate (DC), acceleration capacity of heart rate (AC), and heart rate variability (HRV), and body mass index (BMI) were compared between groups.
RESULTSCompared with the normal control group, the ICPP group had significantly lower DC, standard deviation of normal-to-normal R-R intervals (SDNN), standard deviation of the average normal-to-normal intervals (SDANN), root mean square of successive differences (RMSSD), and high-frequency power (HF) and significantly higher AC and BMI. The ICPP group had significantly lower RMSSD and BMI than the simple obesity group (P<0.05). Compared with the ICPP girls without obesity, those with obesity had significantly lower DC, RMSSD, and HF and significantly higher AC and BMI (P<0.05).
CONCLUSIONSCardiac autonomic dysfunction is seen in girls with ICPP, especially those with obesity, mainly presenting with reduced vagal tone.
Autonomic Nervous System ; physiopathology ; Body Mass Index ; Child ; Child, Preschool ; Female ; Heart ; innervation ; Heart Rate ; physiology ; Humans ; Obesity ; physiopathology ; Puberty, Precocious ; physiopathology
10.Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography.
Lei SHI ; Peng SUN ; Yu PANG ; Zhiyong LUO ; Wei WANG ; Yanxiang WANG
Journal of Biomedical Engineering 2016;33(1):14-17
Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multielectrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human's finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.
Autonomic Nervous System
;
physiopathology
;
Cardiovascular Diseases
;
diagnosis
;
Death, Sudden, Cardiac
;
Electrocardiography
;
Heart Rate
;
Humans
;
Monitoring, Ambulatory
;
instrumentation
;
Photoplethysmography
;
instrumentation
;
Sinoatrial Node
;
physiopathology
;
Software

Result Analysis
Print
Save
E-mail