1.Corticostriatal Neurons in the Anterior Auditory Field Regulate Frequency Discrimination Behavior.
Zhao-Qun WANG ; Hui-Zhong WEN ; Tian-Tian LUO ; Peng-Hui CHEN ; Yan-Dong ZHAO ; Guang-Yan WU ; Ying XIONG
Neuroscience Bulletin 2023;39(6):962-972
The anterior auditory field (AAF) is a core region of the auditory cortex and plays a vital role in discrimination tasks. However, the role of the AAF corticostriatal neurons in frequency discrimination remains unclear. Here, we used c-Fos staining, fiber photometry recording, and pharmacogenetic manipulation to investigate the function of the AAF corticostriatal neurons in a frequency discrimination task. c-Fos staining and fiber photometry recording revealed that the activity of AAF pyramidal neurons was significantly elevated during the frequency discrimination task. Pharmacogenetic inhibition of AAF pyramidal neurons significantly impaired frequency discrimination. In addition, histological results revealed that AAF pyramidal neurons send strong projections to the striatum. Moreover, pharmacogenetic suppression of the striatal projections from pyramidal neurons in the AAF significantly disrupted the frequency discrimination. Collectively, our findings show that AAF pyramidal neurons, particularly the AAF-striatum projections, play a crucial role in frequency discrimination behavior.
Acoustic Stimulation/methods*
;
Neurons/physiology*
;
Auditory Cortex/physiology*
;
Auditory Perception
;
Pyramidal Cells
2.Excitatory Crossmodal Input to a Widespread Population of Primary Sensory Cortical Neurons.
Yuan-Jie XIAO ; Lidan WANG ; Yu-Zhang LIU ; Jiayu CHEN ; Haoyu ZHANG ; Yan GAO ; Hua HE ; Zheng ZHAO ; Zhiru WANG
Neuroscience Bulletin 2022;38(10):1139-1152
Crossmodal information processing in sensory cortices has been reported in sparsely distributed neurons under normal conditions and can undergo experience- or activity-induced plasticity. Given the potential role in brain function as indicated by previous reports, crossmodal connectivity in the sensory cortex needs to be further explored. Using perforated whole-cell recording in anesthetized adult rats, we found that almost all neurons recorded in the primary somatosensory, auditory, and visual cortices exhibited significant membrane-potential responses to crossmodal stimulation, as recorded when brain activity states were pharmacologically down-regulated in light anesthesia. These crossmodal cortical responses were excitatory and subthreshold, and further seemed to be relayed primarily by the sensory thalamus, but not the sensory cortex, of the stimulated modality. Our experiments indicate a sensory cortical presence of widespread excitatory crossmodal inputs, which might play roles in brain functions involving crossmodal information processing or plasticity.
Animals
;
Auditory Cortex/physiology*
;
Neuronal Plasticity/physiology*
;
Neurons
;
Rats
;
Thalamus
;
Visual Cortex/physiology*
3.The function of auditory cortex in the elderly using functional near-infrared spectroscopy technology.
Liu YANG ; You Nuo CHEN ; Song Jian WANG ; Yuan WANG ; Ting CHEN ; Ying LIANG ; Shuo WANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):458-466
Objective: Functional near-infrared spectroscopy (fNIRS) was used to study the effect of aging on the neuroimaging characteristics of cerebral cortex in the process of speech perception. Method: Thirty-four adults with normal hearing were recruited from March 2021 to June 2021, including 17 in the young group, with 6 males, 11 females, age (32.1±5.0) years, age range 20-39 years. and 17 in the elderly group, with 6 males, 11 females, age (63.2±2.8) years, age range 60-70 years. The test material was the sentence table of the Mandarin Hearing Test in Noise (MHINT). The task state block experiment design was adopted, and the temporal lobe, Broca's area, Wernicke's area, motor cortex were used as regions of interest. Objective brain imaging technology (fNIRS) combined with subjective psychophysical testing method was used to analyze the activation area and degree of cerebral cortex related to auditory speech perception in the elderly and young people under different listening conditions (quiet, signal-to-noise ratio of 10 dB, 5 dB, 0 dB, -5 dB). SPSS 23 software was used for statistical analysis. Result: The activation area and degree of activation in the elderly group were lower than those in the young group under each task condition; The number of activation channels in the young group were significantly more than those in the old group, and the number of activation channels in the left hemisphere were more than those in the right hemisphere, but there was no difference in the number of activation channels. There were more channels affected by age in the left hemisphere than in the right hemisphere. The activation degree of the young group when the signal-to-noise ratio was 0 dB was significantly higher than that of other signal-to-noise ratio conditions (P<0.05), but there was no significant difference in the old group under the five conditions (P>0.05). The speech recognition score of the young group was higher than that of the old group under all conditions. When the quiet and signal-to-noise ratio was 10 dB, the correct score of the two groups was equal or close to 100%. With the gradual decrease of signal-to-noise ratio, there was a significant difference between the two groups when the signal-to-noise ratio was 5 dB. The speech recognition accuracy of the young group decreased significantly when the signal-to-noise ratio was 0 dB, while that of the old group decreased significantly when the signal-to-noise ratio was 5 dB. Conclusions: With the increase of age, the speech perception in noisy environment and the activity of cerebral cortex gradually deteriorate, and the speech dominance hemisphere (left hemisphere) will be significantly affected by aging. The overall activation area and activation degree of the elderly under different speech tasks are lower than those of the young.
Acoustic Stimulation/methods*
;
Adolescent
;
Adult
;
Aged
;
Auditory Cortex/physiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Spectroscopy, Near-Infrared
;
Speech Perception/physiology*
;
Technology
;
Young Adult
4.Neural mechanism for modulation of auditory response of the striatum by locomotion.
Wei Long HUANG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(5):766-771
OBJECTIVE:
To explore whether the characteristic responses to sound stimulations of the auditory neurons in the striatum is regulated in different behavioral states.
METHODS:
The auditory neurons in the striatum of awake C57BL/6J mice were selected for this study. We recorded the auditory response of the striatum to noises over a long period of time by building a synchronous in vivo electrophysiological and locomotion recording system and using glass microelectrode attachment recording. By analyzing the running speed of the mice, the behavioral states of the mice were divided into the quiet state and the active state, and the spontaneous activity and evoked responses of the auditory neurons in the striatum were analyzed in these two states.
RESULTS:
Compared with those recorded in the quiet state, the spontaneous activity of the auditory neurons in the striatum of the mice increased significantly (37.06±12.02 vs 18.51±10.91, P < 0.001) while the auditory response of the neurons decreased significantly (noise intensity=60 dB, 3.45±2.99 vs 3.04±2.76, P < 0.001) in the active state.
CONCLUSION
Locomotion has a significant inhibitory effect on the auditory response of the striatum, which may importantly contribute to the decline of sound information recognition ability in the active state.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Evoked Potentials, Auditory
;
Locomotion/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Neurons
5.Auditory response patterns of mouse primary auditory cortex to sound stimuli.
Qin Hong ZHENG ; Chang Bao SONG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(8):1212-1220
OBJECTIVE:
To investigate the auditory response patterns of mouse primary auditory cortex (A1) neurons.
METHODS:
In vivo cell-attached recordings and neural network modeling were performed to detect the changes in response patterns of A1 neurons of awake C57BL/6J mice to sound stimulation with varying lengths. A1 neuron signals were recorded for 216 neurons in 20 awake mice using a target sound stimulation sequence, and the classification and response characteristics of A1 neuron response patterns were examined using post-stimulus spike time histograms. To simulate the diversity of the A1 neuron response patterns, an A1 neuron model was established based on the Wilson-Cowan model and integral-firing model. The neuron connection weight parameters in the model were calculated by examining the micro loop structure of the pyramidal neurons, parvalbumin neurons, and somatostatin neurons in the A1 region, and the A1 neural network information coding model was constructed.
RESULTS:
The Onset response neurons only had fast spike response within 10 to 40 ms after the beginning of noise stimulation (122 neurons). The Sustained response neurons had spike response continuously during the noise stimulation (26 neurons). The On-off response neurons had fast spike response after the beginning and the end of noise stimulation (40 neurons). The Offset response neurons only had fast spike response within 10 to 40 ms after the end of noise stimulation (22 neurons). In the neural network model, the Onset peak neural activities of A1 pyramidal neurons, parvalbumin neurons, and somatostatin neurons were 0.7483, 0.5236 and 0.9427, respectively, and their response half peak widths were 18.5 ms, 12 ms and 31 ms during the 100 ms noise stimulation, respectively. By changing the feedforward excitation and synaptic inhibition time constants in the model, the neurons generated numerous different types of spike train.
CONCLUSION
The auditory response of mouse A1 neurons to sound stimuli shows mainly the Onset, Sustained, On-off, and Offset response patterns.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Parvalbumins
;
Somatostatin
6.Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta.
Zuyue CHEN ; Lauri PARKKONEN ; Jingkuan WEI ; Jin-Run DONG ; Yuanye MA ; Synnöve CARLSON
Neuroscience Bulletin 2018;34(2):291-302
Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.
Animals
;
Auditory Cortex
;
physiology
;
Evoked Potentials, Auditory
;
physiology
;
Macaca mulatta
;
Male
;
Prepulse Inhibition
;
physiology
;
Temporal Lobe
;
physiology
7.40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.
Jun YING ; Zheng YAN ; Xiao-Rong GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(5):748-753
The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic.
Acoustic Stimulation
;
methods
;
Adult
;
Algorithms
;
Auditory Cortex
;
physiopathology
;
Auditory Perception
;
physiology
;
Electroencephalography
;
methods
;
Female
;
Hallucinations
;
diagnosis
;
physiopathology
;
Humans
;
Linguistics
;
Male
;
Middle Aged
;
Models, Neurological
;
Speech
;
Young Adult
8.Comparison of tonal response properties of primary auditory cortex neurons of adult rats under urethane and ketamine anesthesia.
Lingyue HUANG ; Lin BAI ; Yan ZHAO ; Zhongju XIAO
Journal of Southern Medical University 2013;33(6):785-793
OBJECTIVETo compare tonal response properties of neurons in the primary auditory cortex of Sprague-Dawley rats anesthetized with urethane and ketamine-xylazine.
METHODSForty-five female Sprague-Dawley rats (200-250 g) were randomized into two groups and anesthetized with urethane or ketamine-xylazine. Tone pips were chosen as the stimuli to obtain the action potentials of the single neurons by in vivo cell-attached recording. The features of the action potentials were extracted with Matlab software to comparatively analyze the acoustic response properties of the neurons between the two anesthetic groups.
RESULTSThe Q values and the characteristic frequencies were independent of the types of anesthetic agents, but with urethane anesthesia, the neurons tended to have higher minimum thresholds, lower spontaneous firing rates, longer response latencies, and more frequent occurrence of tuning with stronger inhibition compared to those in ketamine-xylazine group.
CONCLUSIONUrethane and ketamine might have no obvious impact on the transmission pathway of frequency tuning from the periphery to the auditory cortex, but neurons from rats with urethane anesthesia receive enhanced inhibition mediated by the interneurons or have a lower intrinsic excitability.
Anesthetics ; pharmacology ; Animals ; Audiometry, Pure-Tone ; Auditory Cortex ; drug effects ; physiology ; Female ; Ketamine ; pharmacology ; Neurons ; drug effects ; Rats ; Rats, Sprague-Dawley ; Urethane ; pharmacology
9.Phase synchronization analysis of EEG signal during audio-visual stimulation.
Liwei ZHANG ; Guozhong LIU ; Qian LUO ; Weijun XU
Journal of Biomedical Engineering 2012;29(4):645-649
EEG Synchronization is considered the conformity of the brain functional areas. Advanced brain function requires many nervous systems with a specific function in relevant brain regions (areas) to achieve integration and coordination at different levels. In this paper, a new method for phase synchronization analysis-Mutually Approximate Entropy is proposed to process different frequency band of EEG signal during audio-visual stimulation and get Similar results with the method of Synchronization Index and Mutual Information Entropy. This showed that the Mutually Approximate Entropy can lead to a good indication of the phase synchronization between two leads. The paper also explored the brain reaction zone by the results of the phase synchronization analysis. The research work lays the foundation for the brain-computer interface design.
Acoustic Stimulation
;
Auditory Cortex
;
physiology
;
Brain
;
physiology
;
Electroencephalography Phase Synchronization
;
physiology
;
Entropy
;
Humans
;
Photic Stimulation
;
Signal Processing, Computer-Assisted
;
Visual Cortex
;
physiology
10.Application of slow vertex response in auditory threshold prediction for subjects with hearing loss.
Hui LIU ; Guang-You ZHU ; Li-Hua FAN ; Xiao-Rong ZHOU ; Xun-Wei LIU ; Xiao-Ping YANG
Journal of Forensic Medicine 2011;27(3):182-185
OBJECTIVE:
To study the value of slow vertex response (SVR) in the evaluation of hearing loss by comparing the hearing thresholds acquired with SVR and pure tone audiometry (PTA).
METHODS:
Twenty-five subjects (40 ears) with sensorineural hearing loss were tested by PTA and SVR. According to the thresholds of PTA, these ears were subdivided into mild, moderate and severe hearing loss groups, and rank sum test was performed on the thresholds of SVR and PTA for all the hearing loss groups. Then, the correlation between PTA thresholds and SVR thresholds was analyzed and the mathematical models were established for predicting behavioral thresholds by the thresholds of SVR.
RESULTS:
At four test frequencies (0.5, 1, 2 and 4kHz), the thresholds of SVR had high correlations with thresholds of PTA. Four liner regression equations were established, and the correlation coefficient(r) were 0.971, 0.976, 0.957 and 0.928, respectively (P < 0.05). Back substitution test showed that the liner regression equations would be an easy method for estimating the behavior thresholds.
CONCLUSION
The behavioral threshold can be well judged and evaluated by the liner regression equations established with SVR thresholds.
Acoustic Stimulation/methods*
;
Audiometry, Evoked Response
;
Audiometry, Pure-Tone
;
Auditory Cortex/physiology*
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory/physiology*
;
Female
;
Forensic Medicine/methods*
;
Hearing Loss/physiopathology*
;
Humans
;
Male
;
Predictive Value of Tests
;
Regression Analysis
;
Severity of Illness Index

Result Analysis
Print
Save
E-mail