1.Genetic Etiology Link to Brain Function Underlying ADHD Symptoms and its Interaction with Sleep Disturbance: An ABCD Study.
Aichen FENG ; Dongmei ZHI ; Zening FU ; Shan YU ; Na LUO ; Vince CALHOUN ; Jing SUI
Neuroscience Bulletin 2025;41(6):1041-1053
Attention deficit hyperactivity disorder (ADHD), a prevalent neurodevelopmental disorder influenced by both genetic and environmental factors, remains poorly understood regarding how its polygenic risk score (PRS) impacts functional networks and symptomology. This study capitalized on data from 11,430 children in the Adolescent Brain Cognitive Development study to explore the interplay between PRSADHD, brain function, and behavioral problems, along with their interactive effects. The results showed that children with a higher PRSADHD exhibited more severe attention deficits and rule-breaking problems, and experienced sleep disturbances, particularly in initiating and maintaining sleep. We also identified the central executive network, default mode network, and sensory-motor network as the functional networks most associated with PRS and symptoms in ADHD cases, with potential mediating roles. Particularly, the impact of PRSADHD was enhanced in children experiencing heightened sleep disturbances, emphasizing the need for early intervention in sleep issues to potentially mitigate subsequent ADHD symptoms.
Humans
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Male
;
Female
;
Sleep Wake Disorders/physiopathology*
;
Adolescent
;
Child
;
Brain/diagnostic imaging*
;
Multifactorial Inheritance
;
Genetic Predisposition to Disease
2.Comparative research on brain networks of children with attention deficit hyperactivity disorder and normal children based on visual cognitive tasks.
Zhiwei SONG ; Wenjie LI ; Hui BI ; Suhong WANG ; Ling ZOU
Journal of Biomedical Engineering 2020;37(5):749-755
Aiming at the difference between the brain networks of children with attention deficit hyperactivity disorder (ADHD) and normal children in the task-executing state, this paper conducted a comparative study using the network features of the visual function area. Functional magnetic resonance imaging (fMRI) data of 23 children with ADHD [age: (8.27 ± 2.77) years] and 23 normal children [age: (8.70 ± 2.58) years] were obtained by the visual capture paradigm when the subjects were performing the guessing task. First, fMRI data were used to build a visual area brain function network. Then, the visual area brain function network characteristic indicators including degree distribution, average shortest path, network density, aggregation coefficient, intermediary, etc. were obtained and compared with the traditional whole brain network. Finally, support vector machines (SVM) and other classifiers in the machine learning algorithm were used to classify the feature indicators to distinguish ADHD children from normal children. In this study, visual brain function network features were used for classification, with a classification accuracy of up to 96%. Compared with the traditional method of constructing a whole brain network, the accuracy was improved by about 10%. The test results show that the use of visual area brain function network analysis can better distinguish ADHD children from normal children. This method has certain help to distinguish the brain network between ADHD children and normal children, and is helpful for the auxiliary diagnosis of ADHD children.
Attention Deficit Disorder with Hyperactivity/diagnostic imaging*
;
Brain/diagnostic imaging*
;
Brain Mapping
;
Child
;
Child, Preschool
;
Cognition
;
Humans
;
Magnetic Resonance Imaging
3.Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.
Andan QIAN ; Xin WANG ; Huiru LIU ; Jiejie TAO ; Jiejie ZHOU ; Qiong YE ; Jiance LI ; Chuang YANG ; Jingliang CHENG ; Ke ZHAO ; Meihao WANG
Neuroscience Bulletin 2018;34(3):497-506
Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.
Attention Deficit Disorder with Hyperactivity
;
diagnostic imaging
;
genetics
;
pathology
;
Brain
;
diagnostic imaging
;
Cerebellum
;
diagnostic imaging
;
Child
;
Corpus Striatum
;
diagnostic imaging
;
Female
;
Frontal Lobe
;
diagnostic imaging
;
Genotype
;
Humans
;
Image Processing, Computer-Assisted
;
Magnetic Resonance Imaging
;
Male
;
Minisatellite Repeats
;
genetics
;
Neural Pathways
;
diagnostic imaging
;
Oxygen
;
blood
;
Receptors, Dopamine D4
;
genetics
;
metabolism
;
Rest

Result Analysis
Print
Save
E-mail