1.Circadian rhythm disturbances and neurodevelopmental disorders.
Deng-Feng LIU ; Yi-Chun ZHANG ; Jia-Da LI
Acta Physiologica Sinica 2025;77(4):678-688
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intellectual developmental disorder (IDD), are highly prevalent and lack effective treatments, posing significant health challenges. These disorders are frequently comorbid with disruptions in sleep rhythms, and sleep-related indicators are often used to assess disease severity and treatment efficacy. Recent evidence has highlighted the crucial roles of circadian rhythm disturbances and circadian clock gene mutations in the pathogenesis of NDDs. This review focuses on the mechanisms by which circadian rhythm disruptions and circadian clock gene mutations contribute to cognitive, behavioral, and emotional disorders associated with NDDs, particularly through the dysregulation of dopamine system. Additionally, we discussed the potential of targeting the circadian system as novel therapeutic strategies for the treatment of NDDs.
Humans
;
Neurodevelopmental Disorders/genetics*
;
Attention Deficit Disorder with Hyperactivity/genetics*
;
Circadian Rhythm/genetics*
;
Autism Spectrum Disorder/genetics*
;
Mutation
;
Intellectual Disability/genetics*
;
Circadian Clocks/physiology*
;
Dopamine/metabolism*
2.Neural network for auditory speech enhancement featuring feedback-driven attention and lateral inhibition.
Yudong CAI ; Xue LIU ; Xiang LIAO ; Yi ZHOU
Journal of Biomedical Engineering 2025;42(1):82-89
The processing mechanism of the human brain for speech information is a significant source of inspiration for the study of speech enhancement technology. Attention and lateral inhibition are key mechanisms in auditory information processing that can selectively enhance specific information. Building on this, the study introduces a dual-branch U-Net that integrates lateral inhibition and feedback-driven attention mechanisms. Noisy speech signals input into the first branch of the U-Net led to the selective feedback of time-frequency units with high confidence. The generated activation layer gradients, in conjunction with the lateral inhibition mechanism, were utilized to calculate attention maps. These maps were then concatenated to the second branch of the U-Net, directing the network's focus and achieving selective enhancement of auditory speech signals. The evaluation of the speech enhancement effect was conducted by utilising five metrics, including perceptual evaluation of speech quality. This method was compared horizontally with five other methods: Wiener, SEGAN, PHASEN, Demucs and GRN. The experimental results demonstrated that the proposed method improved speech signal enhancement capabilities in various noise scenarios by 18% to 21% compared to the baseline network across multiple performance metrics. This improvement was particularly notable in low signal-to-noise ratio conditions, where the proposed method exhibited a significant performance advantage over other methods. The speech enhancement technique based on lateral inhibition and feedback-driven attention mechanisms holds significant potential in auditory speech enhancement, making it suitable for clinical practices related to artificial cochleae and hearing aids.
Humans
;
Attention/physiology*
;
Speech Perception/physiology*
;
Neural Networks, Computer
;
Speech
;
Noise
;
Feedback
3.Motor imagery classification based on dynamic multi-scale convolution and multi-head temporal attention.
Journal of Biomedical Engineering 2025;42(4):678-685
Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.
Electroencephalography/methods*
;
Humans
;
Neural Networks, Computer
;
Brain-Computer Interfaces
;
Attention
;
Signal Processing, Computer-Assisted
;
Imagination/physiology*
;
Algorithms
4.Development and Initial Validation of the Multi-Dimensional Attention Rating Scale in Highly Educated Adults.
Xin-Yang ZHANG ; Karen SPRUYT ; Jia-Yue SI ; Lin-Lin ZHANG ; Ting-Ting WU ; Yan-Nan LIU ; Di-Ga GAN ; Yu-Xin HU ; Si-Yu LIU ; Teng GAO ; Yi ZHONG ; Yao GE ; Zhe LI ; Zi-Yan LIN ; Yan-Ping BAO ; Xue-Qin WANG ; Yu-Feng WANG ; Lin LU
Chinese Medical Sciences Journal 2025;40(2):100-110
OBJECTIVES:
To report the development, validation, and findings of the Multi-dimensional Attention Rating Scale (MARS), a self-report tool crafted to evaluate six-dimension attention levels.
METHODS:
The MARS was developed based on Classical Test Theory (CTT). Totally 202 highly educated healthy adult participants were recruited for reliability and validity tests. Reliability was measured using Cronbach's alpha and test-retest reliability. Structural validity was explored using principal component analysis. Criterion validity was analyzed by correlating MARS scores with the Toronto Hospital Alertness Test (THAT), the Attentional Control Scale (ACS), and the Attention Network Test (ANT).
RESULTS:
The MARS comprises 12 items spanning six distinct dimensions of attention: focused attention, sustained attention, shifting attention, selective attention, divided attention, and response inhibition.As assessed by six experts, the content validation index (CVI) was 0.95, the Cronbach's alpha for the MARS was 0.78, and the test-retest reliability was 0.81. Four factors were identified (cumulative variance contribution rate 68.79%). The total score of MARS was correlated positively with THAT (r = 0.60, P < 0.01) and ACS (r = 0.78, P < 0.01) and negatively with ANT's reaction time for alerting (r = -0.31, P = 0.049).
CONCLUSIONS
The MARS can reliably and validly assess six-dimension attention levels in real-world settings and is expected to be a new tool for assessing multi-dimensional attention impairments in different mental disorders.
Humans
;
Adult
;
Male
;
Attention/physiology*
;
Female
;
Middle Aged
;
Reproducibility of Results
;
Young Adult
;
Psychometrics
5.The microbiota-gut-brain axis in childhood attention-deficit/hyperactivity disorder: mechanisms and therapeutic advances.
Ying-Lun YUAN ; Yong-Mei LAN ; Lin-Mei GUO
Chinese Journal of Contemporary Pediatrics 2025;27(11):1426-1432
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children. Growing evidence links ADHD to gut microbiota dysbiosis, positioning the microbiota-gut-brain axis as a new focus of childhood ADHD research. This review systematically elucidates the association between gut dysbiosis and childhood ADHD and analyzes key mechanisms by which the microbiota-gut-brain axis regulates bidirectional gut-brain communication through multiple pathways. It highlights recent findings on microbiota-targeted strategies to improve ADHD symptoms and discusses therapeutic prospects, with the aim of exploring new avenues for early intervention and treatment in children with ADHD.
Humans
;
Attention Deficit Disorder with Hyperactivity/microbiology*
;
Gastrointestinal Microbiome/physiology*
;
Child
;
Brain/physiology*
;
Dysbiosis
6.Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance.
Suizi TIAN ; Yu-Ang CHENG ; Huan LUO
Neuroscience Bulletin 2025;41(2):195-210
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Humans
;
Memory, Short-Term/physiology*
;
Male
;
Beta Rhythm/physiology*
;
Female
;
Theta Rhythm/physiology*
;
Young Adult
;
Auditory Perception/physiology*
;
Adult
;
Electroencephalography
;
Acoustic Stimulation
;
Reaction Time/physiology*
;
Brain/physiology*
;
Attention/physiology*
7.Mapping Brain-Wide Neural Activity of Murine Attentional Processing in the Five-Choice Serial Reaction Time Task.
Yin YUE ; Youming TAN ; Pin YANG ; Shu ZHANG ; Hongzhen PAN ; Yiran LANG ; Zengqiang YUAN
Neuroscience Bulletin 2025;41(5):741-758
Attention is the cornerstone of effective functioning in a complex and information-rich world. While the neural activity of attention has been extensively studied in the cortex, the brain-wide neural activity patterns are largely unknown. In this study, we conducted a comprehensive analysis of neural activity across the mouse brain during attentional processing using EEG and c-Fos staining, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the c-Fos activation patterns. Our findings reveal that a wide range of brain regions are activated, notably in the high-order cortex, thalamus, and brain stem regions involved in advanced cognition and arousal regulation, with the central lateral nucleus of the thalamus as a strong hub, suggesting the crucial role of the thalamus in attention control. These results provide valuable insights into the neural network mechanisms underlying attention, offering a foundation for formulating functional hypotheses and conducting circuit-level testing.
Animals
;
Attention/physiology*
;
Mice
;
Brain/physiology*
;
Male
;
Electroencephalography
;
Reaction Time/physiology*
;
Brain Mapping
;
Mice, Inbred C57BL
;
Choice Behavior/physiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
8.Research progress of effect of Tai Chi on cognitive function in the elderly based on neuroelectrophysiological techniques and brain imaging techniques.
Chen XUE ; Yuxi LI ; Dongling ZHONG ; Juan LI ; Zhong ZHENG ; Rongjiang JIN
Journal of Biomedical Engineering 2022;39(4):826-832
With the increasing prominence of population aging, the cognitive decline of the elderly has gradually become a hotspot of clinical research. As a traditional rehabilitation exercise, Tai Chi has been proved to have a positive effect on improving cognitive function and delaying cognitive decline in the elderly. However, the related brain function mechanism is still unclear. In this paper, we collected studies which observed the changes of Tai Chi on brain regions related to cognitive function in the elderly using magnetic resonance imaging (MRI), electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS). We summarized relevant studies from perspective of structural and functional changes in the brain. The results showed that Tai Chi may delay and improve cognitive decline in the elderly by reshaping the structure and function of brain regions related to cognitive function such as memory, attention and execution. The effect of Tai Chi for cognitive function may be associated with positive regulation of cardiovascular function, emotion and meditation level of the elderly. In addition, the improvement of cognitive function further enhances the balance of the elderly. We also found that practice time, frequency and intensity of Tai Chi could be factors influencing the improvement of cognitive function and brain function in the elderly.
Aged
;
Attention
;
Brain/physiology*
;
Cognition
;
Humans
;
Neuroimaging
;
Tai Ji/psychology*
9.Study on homeostasis and circadian rhythm of attention performance of different chronotypes in sleep deprivation.
Jingqiang LI ; Qingfu WANG ; Lu ZHANG ; Xining ZHANG ; Yanru ZHOU ; Huanxi ZHANG
Journal of Biomedical Engineering 2022;39(2):248-256
Difference of chronotypes makes influence to cognitive performance of individuals in routine duties. In this paper, 55 subjects with different chronotypes were subjected to continuous sleep deprivation for 30 h by using the constant routine protocol, during which core body temperature was measured continuously, and subjective sleepiness self-rating and the performance of selective attention were measured hourly. The results showed that the phase difference of core body temperature has no significant difference, yet the amplitude and term difference among the three chronotypes are significant. There was an advance in phase between subjective sleepiness self-rating and core body temperature, and the self-rating sleepiness of evening type came the latest, and the self-rating sleepiness of morning type dissipated the fastest. The response time of selective attention showed a 2 h phase delay with subjective sleepiness self-rating. And the analysis of core body temperature showed that the later the chronotype was, the greater the phase delay was. The correct rate of selective attention of different chronotypes were inconsistent with delay of subjective sleepiness self-rating and core body temperature. We provide reference for industry, aviation, military, medical and other fields to make a more scientific scheduling/ shifting based on cognitive performance characteristics of different chronotypes.
Attention/physiology*
;
Circadian Rhythm/physiology*
;
Homeostasis
;
Humans
;
Sleep/physiology*
;
Sleep Deprivation
;
Sleepiness
10.Modulation of Spike Count Correlations Between Macaque Primary Visual Cortex Neurons by Difficulty of Attentional Task.
Qiyi HU ; Wenjuan HU ; Keyi LIU ; Xiangdong BU ; Lisha HU ; Liming LI ; Xinyu CHAI ; Yao CHEN
Neuroscience Bulletin 2022;38(5):489-504
Studies have shown that spatial attention remarkably affects the trial-to-trial response variability shared between neurons. Difficulty in the attentional task adjusts how much concentration we maintain on what is currently important and what is filtered as irrelevant sensory information. However, how task difficulty mediates the interactions between neurons with separated receptive fields (RFs) that are attended to or attended away is still not clear. We examined spike count correlations between single-unit activities recorded simultaneously in the primary visual cortex (V1) while monkeys performed a spatial attention task with two levels of difficulty. Moreover, the RFs of the two neurons recorded were non-overlapping to allow us to study fluctuations in the correlated responses between competing visual inputs when the focus of attention was allocated to the RF of one neuron. While increasing difficulty in the spatial attention task, spike count correlations were either decreased to become negative between neuronal pairs, implying competition among them, with one neuron (or none) exhibiting attentional enhancement of firing rate, or increased to become positive, suggesting inter-neuronal cooperation, with one of the pair showing attentional suppression of spiking responses. Besides, the modulation of spike count correlations by task difficulty was independent of the attended locations. These findings provide evidence that task difficulty affects the functional interactions between different neuronal pools in V1 when selective attention resolves the spatial competition.
Animals
;
Attention/physiology*
;
Macaca mulatta
;
Neurons/physiology*
;
Photic Stimulation
;
Primary Visual Cortex
;
Visual Cortex/physiology*

Result Analysis
Print
Save
E-mail