1.Complete chloroplast genome sequencing and phylogeny of wild Atractylodes lancea from Yuexi, Anhui province.
Jian-Peng HU ; Lu JIANG ; Rui XU ; Jun-Xian WU ; Feng-Ya GUAN ; Jin-Chen YAO ; Jun-Ling LIU ; Ya-Zhong ZHANG ; Liang-Ping ZHA
China Journal of Chinese Materia Medica 2023;48(1):52-59
This study investigated the choroplast genome sequence of wild Atractylodes lancea from Yuexi in Anhui province by high-throughput sequencing, followed by characterization of the genome structure, which laid a foundation for the species identification, analysis of genetic diversity, and resource conservation of A. lancea. To be specific, the total genomic DNA was extracted from the leaves of A. lancea with the improved CTAB method. The chloroplast genome of A. lancea was sequenced by the high-throughput sequencing technology, followed by assembling by metaSPAdes and annotation by CPGAVAS2. Bioiformatics methods were employed for the analysis of simple sequence repeats(SSRs), inverted repeat(IR) border, codon bias, and phylogeny. The results showed that the whole chloroplast genome of A. lancea was 153 178 bp, with an 84 226 bp large single copy(LSC) and a 18 658 bp small single copy(SSC) separated by a pair of IRs(25 147 bp). The genome had the GC content of 37.7% and 124 genes: 87 protein-coding genes, 8 rRNA genes, and 29 tRNA genes. It had 26 287 codons and encoded 20 amino acids. Phylogenetic analysis showed that Atractylodes species clustered into one clade and that A. lancea had close genetic relationship with A. koreana. This study established a method for sequencing the chloroplast genome of A. lancea and enriched the genetic resources of Compositae. The findings are expected to lay a foundation for species identification, analysis of genetic diversity, and resource conservation of A. lancea.
Phylogeny
;
Atractylodes/genetics*
;
Genome, Chloroplast
;
Whole Genome Sequencing
;
Microsatellite Repeats
;
Lamiales
2.Comparison of transcriptome of Atractylodes lancea rhizome and exploration of genes for sesquiterpenoid biosynthesis.
Ye CAO ; Wen-Jin ZHANG ; Li-Kun CHANG ; Chuan-Zhi KANG ; Yue-Feng WANG ; Dong-Mei XIE ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2022;47(18):4895-4907
This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.
Atractylodes/genetics*
;
Mevalonic Acid/metabolism*
;
Rhizome/genetics*
;
Sesquiterpenes/metabolism*
;
Transcriptome
;
Triterpenes/metabolism*
3.Cloning and prokaryotic expression of 3-ketoacyl-CoA thiolase gene AIKAT from Atractylodes lancea.
Rui XU ; Ting-Yu SHAN ; Jun-Xian WU ; Meng-Li LIU ; Han-Wen YU ; Liang-Ping ZHA ; Hua-Sheng PENG
China Journal of Chinese Materia Medica 2021;46(19):4950-4958
In this study, the gene encoding the key enzyme 3-ketoacyl-CoA thiolase(KAT) in the fatty acid β-oxidation pathway of Atractylodes lancea was cloned. Meanwhile, bioinformatics analysis, prokaryotic expression and gene expression analysis were carried out, which laid a foundation for the study of fatty acid β-oxidation mechanism of A. lancea. The full-length sequence of the gene was cloned by RT-PCR with the specific primers designed according to the sequence information of KAT gene in the transcriptomic data of A. lancea and designated as AIKAT(GenBank accession number MW665111). The results showed that the open reading frame(ORF) of AIKAT was 1 323 bp, encoding 440 amino acid. The deduced protein had a theoretical molecular weight of 46 344.36 and an isoelectric point of 8.92. AIKAT was predicted to be a stable alkaline protein without transmembrane segment. The secondary structure of AIKAT was predicted to be mainly composed of α-helix. The tertiary structure of AIKAT protein was predicted by homology modeling method. Homologous alignment revealed that AIKAT shared high sequence identity with the KAT proteins(AaKAT2, CcKAT2, RgKAT and AtKAT, respectively) of Artemisia annua, Cynara cardunculus var. scolymus, Rehmannia glutinosa and Arabidopsis thaliana. The phylogenetic analysis showed that AIKAT clustered with CcKAT2, confirming the homology of 3-ketoacyl-CoA thiolase genes in Compositae. The prokaryotic expression vector pET-32 a-AIKAT was constructed and transformed into Escherichia coli BL21(DE3) for protein expression. The target protein was successfully expressed as a soluble protein of about 64 kDa. A real-time quantitative PCR analysis was performed to profile the AIKAT expression in different tissues of A. lancea. The results demonstrated that the expression level of AIKAT was the highest in rhizome, followed by that in leaves and stems. In this study, the full-length cDNA of AIKAT was cloned and expressed in E. coli BL21(DE3), and qRT-PCR showed the differential expression of this gene in different tissues, which laid a foundation for further research on the molecular mechanism of fatty acid β-oxidation in A. lancea.
Amino Acid Sequence
;
Atractylodes/genetics*
;
Cloning, Molecular
;
Coenzyme A
;
Escherichia coli/genetics*
;
Phylogeny
4.Polysaccharide extracts of Astragalus membranaceus and Atractylodes macrocephala promote intestinal epithelial cell migration by activating the polyamine-mediated K channel.
Dan ZENG ; Can HU ; Ru-Liu LI ; Chuan-Quan LIN ; Jia-Zhong CAI ; Ting-Ting WU ; Jing-Jing SUI ; Wen-Biao LU ; Wei-Wen CHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):674-682
Astragalus membranaceus (Radix Astragali, RA) and Atractylodes macrocephala (Rhizoma Atractylodis Macrocephalae, RAM) are often used to treat gastrointestinal diseases. In the present study, we determined the effects of polysaccharides extracts from these two herbs on IEC-6 cell migration and explored the potential underlying mechanisms. A migration model with IEC-6 cells was induced using a single-edged razor blade along the diameter of cell layers in six-well polystyrene plates. The cells were grown in control media or media containing spermidine (5 μmol·L, SPD), alpha-difluoromethylornithine (2.5 mmol·L, DFMO), 4-Aminopyridine (40 μmol·L, 4-AP), the polysaccharide extracts of RA or RAM (50, 100, or 200 mg·L), DFMO plus SPD, or DFMO plus polysaccharide extracts of RA or RAM for 12 or 24 h. Next, cytosolic free Ca ([Ca]) was measured using laser confocal microscopy, and cellular polyamine content was quantified with HPLC. Kv1.1 mRNA expression was assessed using RT-qPCR and Kv1.1 and RhoA protein expressions were measured with Western blotting analysis. A cell migration assay was carried out using Image-Pro Plus software. In addition, GC-MS was introduced to analyze the monosaccharide composition of both polysaccharide extracts. The resutls showed that treatment with polysaccharide extracts of RA or RAM significantly increased cellular polyamine content, elevated [Ca] and accelerated migration of IEC-6 cells, compared with the controls (P < 0.01). Polysaccharide extracts not only reversed the inhibitory effects of DFMO on cellular polyamine content and [Ca], but also restored IEC-6 cell migration to control level (P < 0.01 or < 0.05). Kv1.1 mRNA and protein expressions were increased (P < 0.05) after polysaccharide extract treatment in polyamine-deficient IEC-6 cells and RhoA protein expression was increased. Molar ratios of D-ribose, D-arabinose, L-rhamnose, D-mannose, D-glucose, and D-galactose was 1.0 : 14.1 : 0.3 : 19.9 : 181.3 : 6.3 in RA and 1.0 : 4.3 : 0.1 : 5.7 : 2.8 : 2.2 in RAM. In conclusion, treatment with RA and RAM polysaccharide extracts stimulated migration of intestinal epithelial cells via a polyamine-Kv1.1 channel activated signaling pathway, which facilitated intestinal injury healing.
Animals
;
Astragalus propinquus
;
chemistry
;
Atractylodes
;
chemistry
;
Cell Line
;
Cell Movement
;
drug effects
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Intestines
;
cytology
;
drug effects
;
Kv1.1 Potassium Channel
;
genetics
;
metabolism
;
Polyamines
;
metabolism
;
Polysaccharides
;
chemistry
;
isolation & purification
;
pharmacology
;
Rats
;
Rhizome
;
chemistry
;
Signal Transduction
;
drug effects
;
rhoA GTP-Binding Protein
;
metabolism
5.Atractylodes lancea rhizome water extract reduces triptolide-induced toxicity and enhances anti-inflammatory effects.
Yuan WEI ; Dan-Juan SUI ; Hai-Miao XU ; Zhen OUYANG ; Na WU ; Du-Jun WANG ; Xiao-Yan ZHANG ; Da-Wei QIAN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):905-911
The present study was designed to explore the influence of water extracts of Atractylodes lancea rhizomes on the toxicity and anti-inflammatory effects of triptolide (TP). A water extract was prepared from A. lancea rhizomes and co-administered with TP in C57BL/6 mice. The toxicity was assayed by determining serum biochemical parameters and visceral indexes and by liver histopathological analysis. The hepatic CYP3A expression levels were detected using Western blotting and RT-PCR methods. The data showed that the water extract of A. lancea rhizomes reduced triptolide-induced toxicity, probably by inducing the hepatic expression of CYP3A. The anti-inflammatory effects of TP were evaluated in mice using a xylene-induced ear edema test. By comparing ear edema inhibition rates, we found that the water extract could also increase the anti-inflammatory effects of TP. In conclusion, our results suggested that the water extract of A. lancea rhizomes, used in combination with TP, has a potential in reducing TP-induced toxicity and enhancing its anti-inflammatory effects.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Atractylodes
;
chemistry
;
Cytochrome P-450 Enzyme System
;
genetics
;
Diterpenes
;
toxicity
;
Edema
;
chemically induced
;
pathology
;
Enzyme Induction
;
drug effects
;
Epoxy Compounds
;
toxicity
;
Gene Expression Regulation
;
drug effects
;
Herb-Drug Interactions
;
Liver
;
drug effects
;
pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Phenanthrenes
;
toxicity
;
Plant Extracts
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Rhizome
;
chemistry
;
Water
;
chemistry
6.Molecular identification and sequence analysis of broad bean wilt virus 2 isolates from atractylodes macrocephala Koidz.
Yanbing NIU ; Xiaoli SHI ; Ximei ZHANG ; Huiqi ZHAO ; Baojia ZHAO
Chinese Journal of Virology 2015;31(1):58-64
To identity the pathogen that causes the mosaic and yellowing symptoms on Atractylodes macrocephala Koidz in Jiangxian, Shanxi province, biological inoculation, sequence-independent amplification (SIA),RT-PCR and other identification methods were used. The results showed that the chlorotic and necrosis symptoms occurred in the indicator plant Chenopodium quinoa after it was infected with the pathogen,and the same symptoms appeared after the reinoculation of healthy Atractylodes macrocephala Koidz; this reflected that the disease was likely to be caused by a virus. The results of SIA and sequencing showed that Broad bean wilt virus 2 (BBWV2) was present in severely mosaic Atractylodes macrocephala Koidz leaves. To further characterize the BBWV2 isolate from Atractylodes macrocephala (BBWV2-Am), the polyprotein partial gene encoded by BBWV2-Am RNA2 was cloned and sequenced. Sequence alignments showed that the nucleotide sequence identity of BBWV2-Am SCP and LCP genes ranged from 79.3% to 87.2% and from 80.1% to 89.2% compared to other BBWV2 strains,respectively; the deduced amino acid sequence similarities of the two gene products ranged from 91.2% to 95.7% and from 89.44 to 95.5%, respectively,compared to those of other BBWV2 strains. Phylogenetic comparisons showed that BBWV2-Am was most likely to be related to BBWV2-Rg,but formed an independent branch. This is the first report of BBWV2 in Atractylodes macrocephala Koidz.
Amino Acid Sequence
;
Atractylodes
;
virology
;
Fabavirus
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Plant Diseases
;
virology
;
Sequence Analysis
;
Viral Proteins
;
chemistry
;
genetics
7.Morphology and AFLP analysis of tetraploid plantlets of Atractylodes macrocephala.
Hong-juan WANG ; Ya-ting LI ; Zeng-xu XIANG
China Journal of Chinese Materia Medica 2015;40(3):404-409
In order to investigate the genetic basis of morphological variation of tetraploid plantlets of Atractylodes macrocephala, diploid plantlets were taken as experimental material, sterile filtration colchicine was used to soak 0.5-1.0 cm long buds. The difference between morphology and stomatal of diploid and tetraploid of A. macrocephala was compared, and genome polymorphism was explored by AFLP. The results showed that the buds dipped in 0.1% colchicine solution for 36 h was optimal conditions to induce tetraploid of A. macrocephala with induction rate of 32.0%. Morphological indexes such as leaf area index, leaf length and width, the density of stomas and the number of chloroplast of tetraploid were distinctly different from diploid. Four hundred and fifty-one bands ranging with 80-500 bp were amplified with 24 pairs of primers, the rate of polymorphism was 32.59%. These amplification sites of diploid were different from tetraploid of A. macrocephala, and the differences in morphology of them were reflected in the DNA polymorphism.
Amplified Fragment Length Polymorphism Analysis
;
methods
;
Atractylodes
;
genetics
;
Sequence Analysis, DNA
;
Tetraploidy
8.Preliminary study on efficacy and mechanism of Atractylodes Macrocephelae Rhizoma extracts in metabolic hyperlipidemia rats.
Qi-jing TANG ; Su-hong CHEN ; Dan-dan PAN ; Bo LI ; Gui-yan LV
China Journal of Chinese Materia Medica 2015;40(9):1803-1807
Hyperlipidemia is a major factor causing coronary heart disease and atherosclerosis. The high-density lipoprotein cholesterol (HDL-C) is a major indicator for measuring lipid levels. However, there is no an effective medicine that can obviously increase HDL-C at present. According to previous laboratory studies, atractylodes macrocephalae extracts could significantly increase HDL-C level. In this study, the metabolic hyperlipidemia rat model was established by feeding high-sugar and fat diets and alcohol-drinking to explore the effect and mechanism of atractylodes macrocephalae extracts on hyperlipidemia rats. According to the findingins, different doses of atractylodes macrocephalae extracts could reduce the levels of TC, TG, LDL-C, ACAT and increase the contents of LCAT, HDL-C. Particularly, the atractylodes macrocephalae extracts (100 mg · kg(-1) group showed increase in HDL-C by about 50% and significant declines in HMG-CoA reductase, TC, TG. In conclusion, Atractylodes Macrocephelae Rhizoma extracts could effectively regulate the dyslipidemia of hyperlipidemia rats, especially on HDL-C. Its mechanism may be related to reduction in cholesterol synthesis by inhibiting HMG-CoA reductase in livers and increase in lipid metabolism and transport by regulating LCAT and ACAT levels.
Acyl Coenzyme A
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Atractylodes
;
chemistry
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
administration & dosage
;
Hyperlipidemias
;
drug therapy
;
enzymology
;
metabolism
;
Lipoproteins, HDL
;
metabolism
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Rhizome
;
chemistry
;
Triglycerides
;
metabolism
9.Effect of Glycyrrhizae Radix et Rhizoma combined with Atractylodis Macrocephalae Rhizoma on p53 and p21 gene expression of IEC-6 cells.
Fang ZHENG ; Ze-bo JIANG ; Xian ZHANG ; Jin-ping HU ; Si-ming LI ; Jin ZHAO ; Xing ZENG
China Journal of Chinese Materia Medica 2015;40(9):1798-1802
To study the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the proliferation of DFMO-treated intestinal epithelial cells (IEC-6) and p53, p21 mRNA and protein expressions, in order to define the molecular basis for the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the cell proliferation. The effect of the drugs on the cell division rate and cell cycle of IEC-6 cells was detected by FCM. Quantitative Real-time PCR (qRT-PCR) was used to analyze the effect of the drugs on mRNA of p2l and p53 related to IEC-6 proliferation. Western blot was used to analyze the effect of the drugs on p2l and p53 protein expressions of IEC-6 cells. Atractylodis Macrocephalae Rhizoma could increase p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells. The combined administration of different ratios of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could significantly down-regulate Atractylodis Macrocephalae Rhizoma's effect on p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells and promote the proliferation of IEC-6 cells. The combined administration of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could down-regulate Atractylodis Macrocephalae Rhizoma's effect on DFMO-treated intestinal epithelial cells (IEC-6).
Animals
;
Atractylodes
;
chemistry
;
Cell Line
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Glycyrrhiza
;
chemistry
;
Intestines
;
drug effects
;
metabolism
;
Rats
;
Rhizome
;
chemistry
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
10.Restriction endonuclease digest - melting curve analysis: a new SNP genotyping and its application in traditional Chinese medicine authentication.
Chao JIANG ; Lu-Qi HUANG ; Yuan YUAN ; Min CHEN ; Jing-Yi HOU ; Zhi-Gang WU ; Shu-Fang LIN
Acta Pharmaceutica Sinica 2014;49(4):558-565
Single nucleotide polymorphisms (SNP) is an important molecular marker in traditional Chinese medicine research, and it is widely used in TCM authentication. The present study created a new genotyping method by combining restriction endonuclease digesting with melting curve analysis, which is a stable, rapid and easy doing SNP genotyping method. The new method analyzed SNP genotyping of two chloroplast SNP which was located in or out of the endonuclease recognition site, the results showed that when attaching a 14 bp GC-clamp (cggcgggagggcgg) to 5' end of the primer and selecting suited endonuclease to digest the amplification products, the melting curve of Lonicera japonica and Atractylodes macrocephala were all of double peaks and the adulterants Shan-yin-hua and A. lancea were of single peaks. The results indicated that the method had good stability and reproducibility for identifying authentic medicines from its adulterants. It is a potential SNP genotyping method and named restriction endonuclease digest - melting curve analysis.
Atractylodes
;
classification
;
genetics
;
DNA Restriction Enzymes
;
metabolism
;
DNA, Plant
;
genetics
;
Drug Contamination
;
Genotype
;
Lonicera
;
classification
;
genetics
;
Plants, Medicinal
;
classification
;
genetics
;
Polymorphism, Single Nucleotide

Result Analysis
Print
Save
E-mail