1.Simultaneous determination of 498 farm chemical residues in Atractylodis Macrocephalae Rhizoma by HPLC-MS/MS.
Bai-Xue CHEN ; Yu-Qiang WU ; Gui-Chang BAI ; Yi LUO
China Journal of Chinese Materia Medica 2025;50(8):2090-2107
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) method was established for the simultaneous determination of 498 farm chemical residues in Atractylodis Macrocephalae Rhizoma. Furthermore, the established method was used to determine the residues in 30 batches of Atractylodis Macrocephalae Rhizoma samples from different habitats. The samples were extracted with acetonitrile containing 1% glacial acetic acid, and the extract was purified by dispersive solid-phase extraction with sorbents of magnesium sulfate, primary secondary amine(PSA), C_(18), silica gel, and graphitized carbon black(GCB). The prepared samples were then analyzed by HPLC-MS/MS, and the internal standard method was used to quantify the residues. The experimental results showed that the 498 farm chemicals presented good linear relationship within the range of 5-400 ng·mL~(-1), with correction coefficients greater than 0.990. Within the linear ranges, the recovery of 495 farm chemicals(except daimuron, chinomethionat, and emamectin benzoate) at three spiked levels(0.05, 0.10, and 0.20 mg·kg~(-1)) was in the range of 61.18%-132.1%, with the RSD of 0.24%-15%. A total of 16 farm chemicals were detected in 30 batches of samples. Among them, difenoconazole and tebuconazole showed higher detection rates, and the detection rate of difenoconazole was 76.7%. The residues of 4 batches of samples exceeded the limits of quantitation of 33 banned farm chemicals stipulated in the Chinese Pharmacopoeia. The theoretical maximum residue limits of the farm chemicals except banned farm cheimicals were used as the judgment standard of safety risks, under which the detected residues of clothianidin, difenoconazole, and pirimiphos-methyl exceeded the theoretical maximum residue limits. The new method established in this paper is simple and reliable, and it can thus be used for qualitative and quantitative analyses of farm chemical residues in Atractylodis Macrocephalae Rhizoma.
Tandem Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Atractylodes/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/analysis*
;
Pesticide Residues/analysis*
;
Liquid Chromatography-Mass Spectrometry
2.Chemical pattern recognition of Atractylodes chinensis from different producing areas and establishment of quantitative analysis of multi-components by single marker (QAMS) method for four components.
Yan-Yun ZHAO ; Jian-Yun ZHANG ; Kai-Yan ZHENG ; Xian GU ; Qian WANG ; Long GUO ; Hai-Shuo REN ; Yu-Guang ZHENG ; Min-Hui LI ; Hui-Yong FANG
China Journal of Chinese Materia Medica 2022;47(16):4395-4402
This study established the fingerprint and combined it with chemical pattern recognition to evaluate the quality of Atractylodes chinensis samples from different producing areas and then employed the quantitative analysis of multi-components by single marker(QAMS) method to verify the feasibility and applicability of the established method in the quality evaluation of A. chinensis. The fingerprints of A. chinensis samples were constructed via high performance liquid chromatography(HPLC) to evaluate the inter-batch consistency. With the quality control component atractylodin as the internal reference, the relative correction factors(RCFs) were established for atractylenolide Ⅰ, atractylenolide Ⅲ, and β-eudesmol and the content of the four components was calculated. The external standard method was used to verify the accuracy of QAMS method. The quality of A. chinensis was further evaluated by similarity analysis, clustering analysis, and principal component analysis. The fingerprints of 13 batches of samples were calibrated with 21 common peaks, and 4 common peaks were identified with the similarities all above 0.9. The RCFs established with atractylodin as the internal reference represented good reproducibility under different experimental conditions. Specifically, the RCFs of atractylenolide Ⅰ, atractylenolide Ⅲ, and β-eudesmol in A. chinensis were 2.091, 4.253, and 6.010, respectively. QAMS and ESM showed no significant difference in the results, indicating that the QAMS method established in this study was stable and reliable. Thus, HPLC fingerprint combined with QAMS can be used for the quality evaluation of A. chinensis, providing a basis for comprehensive and rapid quality evaluation of A. chinensis.
Atractylodes
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Reproducibility of Results
3.Mechanism of Atractylodes macrocephala against Alzheimer's disease via regulating lysophagy based on LKB1-AMPK-TFEB pathway.
Li-Min WU ; Jie ZHAO ; Xiao-Wei ZHANG ; Zhong-Hua LI ; Pan WANG ; Yi-Ran SUN ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2022;47(17):4723-4732
Myloid beta(Aβ) is produced by cleavage of amyloid precursor protein(APP), which is a main reason for Alzheimer's disease(AD) occurrence and development. This study preliminarily investigated the mechanism of Atractylodes macrocephala(AM) against AD based on LKB1-AMPK-TFEB pathway. The effect of AM on memory ability of AD transgenic Caenorhabditis elegans CL2241 was detected, and then the APP plasmid was transiently transferred to mouse neuroblastoma(N2 a) cells in vitro. The mice were divided into the blank control group, APP group(model group), positive control group(100 μmol·L~(-1) rapamycin), and AM low-, medium-and high-dose groups(100, 200 and 300 μg·mL~(-1)). The content of Aβ_(1-42) in cell medium, the protein level of APP, the fluorescence intensity of APP, the transcriptional activity of transcription factor EB(TFEB), the activity of lysosomes in autophagy, and autophagy flux were determined by enzyme-linked immunosorbent assay(ELISA), Western blot, fluorescence microscope, luciferase reporter gene assay, RLuc-LC3 wt/RLuc-LC3 G120 A, and mRFP-GFP-LC3, respectively. The protein expression of TFEB, LC3Ⅱ, LC3Ⅰ, LAMP2, Beclin1, LKB1, p-AMPK and p-ACC was detected by Western blot. Immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the fluorescence intensity of TFEB and the mRNA expression of TFEB and downstream target genes, respectively. The results showed that AM reduced the chemotactic index of transgenic C. elegans CL2241, and decreased the content of Aβ in the supernatant of cell culture medium at different concentrations. In addition, AM lowered the protein level of APP and the fluorescence intensity of APP in a dose-dependent manner. Transcriptional activity of TFEB and fluorescence intensity of mRFP-GFP-LC3 plasmid were enhanced after AM treatment, and the value of RLuc-LC3 wt/RLuc-LC3 G120 A was reduced. AM promoted the protein levels of TFEB, LAMP2 and Beclin1 at different concentrations, and increased the protein expression ratio of LC3Ⅱ/LC3Ⅰ in a dose-dependent manner. Immunofluorescence results revealed that AM improved the fluorescence intensity and nuclear expression of TFEB, and RT-PCR results indicated that AM of various concentrations elevated the mRNA expression of TFEB in APP transfected N2 a cells and promoted the transcription level of LAMP2 in a dose-dependent manner, and high-concentration AM also increased the mRNA levels of LC3 and P62. The protein levels of LKB1, p-AMPK and p-ACC were elevated by AM of different concentrations. In summary, AM regulating lysophagy and degrading APP are related to the activation of LKB1-AMPK-TFEB pathway.
AMP-Activated Protein Kinases/metabolism*
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Atractylodes/chemistry*
;
Autophagy/drug effects*
;
Beclin-1/pharmacology*
;
Caenorhabditis elegans/metabolism*
;
Macroautophagy
;
Mice
;
RNA, Messenger
;
Sirolimus/pharmacology*
4.New eudesmane sesquiterpenoids from Atractylodis Macrocephalae Rhizoma and their inhibitory activities against SREBPs.
Rui-Zhu XU ; Xuan ZHAO ; Yue-Yue DU ; Meng-Sha XU ; Xin-Guang LIU ; Zhi-Shen XIE ; Song GAO ; Jiang-Yan XU ; Pan WANG
China Journal of Chinese Materia Medica 2022;47(2):428-432
Three sesquiterpenoids were isolated and purified from the 95% ethanol extract of Atractylodis Macrocephalae Rhizoma by column chromatography on silica gel, Sephadex LH-20, ODS, and high-performance liquid chromatography(HPLC). Their chemical structures were identified on the basis of spectroscopic analysis and physiochemical properties as(7Z)-8β,13-diacetoxy-eudesma-4(15),7(11)-diene(1), 7-oxo-7,8-secoeudesma-4(15),11-dien-8-oic acid(2), and guai-10(14)-en-11-ol(3). Compounds 1 and 2 are new compounds and compound 3 was obtained from Compositae family for the first time. Compounds 1, 2, and 3 showed weak inhibitory activities against sterol regulatory element-binding proteins(SREBPs).
Atractylodes/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Sesquiterpenes, Eudesmane/pharmacology*
;
Sterol Regulatory Element Binding Proteins/antagonists & inhibitors*
5.Feasibility study of QAMS for quantitative analysis of multiple structural types of ingredients in Atractylodis Rhizome by GC.
Wen-Ting CHEN ; Yang CHEN ; Bo CUI ; Xiao-Qi LI ; Yan-Hao FAN ; Xin-Hong WANG ; Rui AN
China Journal of Chinese Materia Medica 2018;43(3):551-556
In this study, quantitative analysis of multi-components with single marker(QAMS) was established and validated to simultaneously determine four sesquiterpenoids(β-eudesmol, atractylon, atractylolideⅠ, atractylolide Ⅱ) in Atractylodis Rhizome based on the gas chromatographic method(GC). Using β-eudesmol as the contrast, the relative correctionfactors(RCF) of the other three sesquiterpenoids were determined by GC. Within the line arranges,the values of RCF of β-eudesmol to atractylon, atractylolideⅠand atractylolide Ⅱ were 0.823, 0.690 and 0.766, respectively. The RCF had a good reproducibility in various instruments, chromatographic columns. According to their RCF, we simultaneously determined four sesquiterpenoids in Atractylodis Rhizome only using one marker. The results of QAMS method were validated by comparing with that of internal standard method, and no obvious significant difference was found.
Atractylodes
;
chemistry
;
Chromatography, Gas
;
Drugs, Chinese Herbal
;
chemistry
;
Feasibility Studies
;
Phytochemicals
;
analysis
;
Reproducibility of Results
;
Rhizome
;
chemistry
6.Polysaccharide extracts of Astragalus membranaceus and Atractylodes macrocephala promote intestinal epithelial cell migration by activating the polyamine-mediated K channel.
Dan ZENG ; Can HU ; Ru-Liu LI ; Chuan-Quan LIN ; Jia-Zhong CAI ; Ting-Ting WU ; Jing-Jing SUI ; Wen-Biao LU ; Wei-Wen CHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(9):674-682
Astragalus membranaceus (Radix Astragali, RA) and Atractylodes macrocephala (Rhizoma Atractylodis Macrocephalae, RAM) are often used to treat gastrointestinal diseases. In the present study, we determined the effects of polysaccharides extracts from these two herbs on IEC-6 cell migration and explored the potential underlying mechanisms. A migration model with IEC-6 cells was induced using a single-edged razor blade along the diameter of cell layers in six-well polystyrene plates. The cells were grown in control media or media containing spermidine (5 μmol·L, SPD), alpha-difluoromethylornithine (2.5 mmol·L, DFMO), 4-Aminopyridine (40 μmol·L, 4-AP), the polysaccharide extracts of RA or RAM (50, 100, or 200 mg·L), DFMO plus SPD, or DFMO plus polysaccharide extracts of RA or RAM for 12 or 24 h. Next, cytosolic free Ca ([Ca]) was measured using laser confocal microscopy, and cellular polyamine content was quantified with HPLC. Kv1.1 mRNA expression was assessed using RT-qPCR and Kv1.1 and RhoA protein expressions were measured with Western blotting analysis. A cell migration assay was carried out using Image-Pro Plus software. In addition, GC-MS was introduced to analyze the monosaccharide composition of both polysaccharide extracts. The resutls showed that treatment with polysaccharide extracts of RA or RAM significantly increased cellular polyamine content, elevated [Ca] and accelerated migration of IEC-6 cells, compared with the controls (P < 0.01). Polysaccharide extracts not only reversed the inhibitory effects of DFMO on cellular polyamine content and [Ca], but also restored IEC-6 cell migration to control level (P < 0.01 or < 0.05). Kv1.1 mRNA and protein expressions were increased (P < 0.05) after polysaccharide extract treatment in polyamine-deficient IEC-6 cells and RhoA protein expression was increased. Molar ratios of D-ribose, D-arabinose, L-rhamnose, D-mannose, D-glucose, and D-galactose was 1.0 : 14.1 : 0.3 : 19.9 : 181.3 : 6.3 in RA and 1.0 : 4.3 : 0.1 : 5.7 : 2.8 : 2.2 in RAM. In conclusion, treatment with RA and RAM polysaccharide extracts stimulated migration of intestinal epithelial cells via a polyamine-Kv1.1 channel activated signaling pathway, which facilitated intestinal injury healing.
Animals
;
Astragalus propinquus
;
chemistry
;
Atractylodes
;
chemistry
;
Cell Line
;
Cell Movement
;
drug effects
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Intestines
;
cytology
;
drug effects
;
Kv1.1 Potassium Channel
;
genetics
;
metabolism
;
Polyamines
;
metabolism
;
Polysaccharides
;
chemistry
;
isolation & purification
;
pharmacology
;
Rats
;
Rhizome
;
chemistry
;
Signal Transduction
;
drug effects
;
rhoA GTP-Binding Protein
;
metabolism
7.Atractylodes lancea rhizome water extract reduces triptolide-induced toxicity and enhances anti-inflammatory effects.
Yuan WEI ; Dan-Juan SUI ; Hai-Miao XU ; Zhen OUYANG ; Na WU ; Du-Jun WANG ; Xiao-Yan ZHANG ; Da-Wei QIAN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):905-911
The present study was designed to explore the influence of water extracts of Atractylodes lancea rhizomes on the toxicity and anti-inflammatory effects of triptolide (TP). A water extract was prepared from A. lancea rhizomes and co-administered with TP in C57BL/6 mice. The toxicity was assayed by determining serum biochemical parameters and visceral indexes and by liver histopathological analysis. The hepatic CYP3A expression levels were detected using Western blotting and RT-PCR methods. The data showed that the water extract of A. lancea rhizomes reduced triptolide-induced toxicity, probably by inducing the hepatic expression of CYP3A. The anti-inflammatory effects of TP were evaluated in mice using a xylene-induced ear edema test. By comparing ear edema inhibition rates, we found that the water extract could also increase the anti-inflammatory effects of TP. In conclusion, our results suggested that the water extract of A. lancea rhizomes, used in combination with TP, has a potential in reducing TP-induced toxicity and enhancing its anti-inflammatory effects.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Atractylodes
;
chemistry
;
Cytochrome P-450 Enzyme System
;
genetics
;
Diterpenes
;
toxicity
;
Edema
;
chemically induced
;
pathology
;
Enzyme Induction
;
drug effects
;
Epoxy Compounds
;
toxicity
;
Gene Expression Regulation
;
drug effects
;
Herb-Drug Interactions
;
Liver
;
drug effects
;
pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Phenanthrenes
;
toxicity
;
Plant Extracts
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Rhizome
;
chemistry
;
Water
;
chemistry
8.Effect of Chinese Herbs Used in Treating Multiple Sclerosis on T Subsets Using Association Rules.
Qi ZHANG ; Tao LI ; Yong-gang XU ; Xiao-hong YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):425-429
OBJECTIVETo analyze the effect of Chinese herbs used by Prof. LI Tao on peripheral blood T subsets in treating multiple sclerosis (MS) by using association rules and statistical methods, thereby providing evidence for optimizing prescriptions.
METHODSData of MS inpatients and outpatients recorded by data collecting system, Xiyuan Hospital, China Academy of Chinese Medical Sciences were resorted. The relationship between Chinese herbs and T cell subsets were analyzed using SPSS17.0 and Aprior module in SPSS Clementine 12.0.
RESULTSRadix bupleuri, Radix Paeoniae alba, Fructus Aurantii, Atractylodes, and Radix Glycyrrhizae were most commonly used herbal combinations.Radix Aconiti lateralis preparata and Rhizoma Smilacis glabrae were often added. Radix Aconiti lateralis preparata was associated with decreased Th1 cells (confidence level 83.78%, supportive level 36.26%). Decreased Th1 cell was associated with Radix Aconiti lateralis preparata (confidence level 71.26%, supportive level 36.26%).Radix Aconiti lateralis preparata was obviously associated with decreased Th1 cells. Radix Bupleuri, Radix Paeoniae alba, bitter orange, Atractylodes , Radix glycyrrhizae, and Radix Aconiti lateralis preparata could reduce peripheral blood Th1 subsets of MS patients and elevate Th2 subsets (all P < 0.01).
CONCLUSIONSThe herbal combination of Radix Bupleuri, Radix Paeoniae alba, Fructus Aurantii, Atractylodes, Radix Glycyrrhizae, Rhizoma Smilacis glabrae, and Radix Aconiti lateralis preparata could lower peripheral blood Th1 cells and elevate Th2 cells, and prevent the relapse of MS possibly by reducing Th1 cells and elevating Th2 cells. Especially Radix Aconiti lateralis preparata played important roles in aforesaid changes of Th1 and Th2.
Aconitum ; chemistry ; Atractylodes ; chemistry ; Bupleurum ; chemistry ; China ; Drugs, Chinese Herbal ; therapeutic use ; Fruit ; chemistry ; Glycyrrhiza ; chemistry ; Humans ; Multiple Sclerosis ; therapy ; Paeonia ; chemistry ; Plant Roots ; chemistry ; Rhizome ; chemistry ; Smilacaceae ; chemistry ; T-Lymphocyte Subsets ; drug effects
9.Preliminary study on efficacy and mechanism of Atractylodes Macrocephelae Rhizoma extracts in metabolic hyperlipidemia rats.
Qi-jing TANG ; Su-hong CHEN ; Dan-dan PAN ; Bo LI ; Gui-yan LV
China Journal of Chinese Materia Medica 2015;40(9):1803-1807
Hyperlipidemia is a major factor causing coronary heart disease and atherosclerosis. The high-density lipoprotein cholesterol (HDL-C) is a major indicator for measuring lipid levels. However, there is no an effective medicine that can obviously increase HDL-C at present. According to previous laboratory studies, atractylodes macrocephalae extracts could significantly increase HDL-C level. In this study, the metabolic hyperlipidemia rat model was established by feeding high-sugar and fat diets and alcohol-drinking to explore the effect and mechanism of atractylodes macrocephalae extracts on hyperlipidemia rats. According to the findingins, different doses of atractylodes macrocephalae extracts could reduce the levels of TC, TG, LDL-C, ACAT and increase the contents of LCAT, HDL-C. Particularly, the atractylodes macrocephalae extracts (100 mg · kg(-1) group showed increase in HDL-C by about 50% and significant declines in HMG-CoA reductase, TC, TG. In conclusion, Atractylodes Macrocephelae Rhizoma extracts could effectively regulate the dyslipidemia of hyperlipidemia rats, especially on HDL-C. Its mechanism may be related to reduction in cholesterol synthesis by inhibiting HMG-CoA reductase in livers and increase in lipid metabolism and transport by regulating LCAT and ACAT levels.
Acyl Coenzyme A
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Atractylodes
;
chemistry
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
administration & dosage
;
Hyperlipidemias
;
drug therapy
;
enzymology
;
metabolism
;
Lipoproteins, HDL
;
metabolism
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Rhizome
;
chemistry
;
Triglycerides
;
metabolism
10.Effect of Glycyrrhizae Radix et Rhizoma combined with Atractylodis Macrocephalae Rhizoma on p53 and p21 gene expression of IEC-6 cells.
Fang ZHENG ; Ze-bo JIANG ; Xian ZHANG ; Jin-ping HU ; Si-ming LI ; Jin ZHAO ; Xing ZENG
China Journal of Chinese Materia Medica 2015;40(9):1798-1802
To study the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the proliferation of DFMO-treated intestinal epithelial cells (IEC-6) and p53, p21 mRNA and protein expressions, in order to define the molecular basis for the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the cell proliferation. The effect of the drugs on the cell division rate and cell cycle of IEC-6 cells was detected by FCM. Quantitative Real-time PCR (qRT-PCR) was used to analyze the effect of the drugs on mRNA of p2l and p53 related to IEC-6 proliferation. Western blot was used to analyze the effect of the drugs on p2l and p53 protein expressions of IEC-6 cells. Atractylodis Macrocephalae Rhizoma could increase p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells. The combined administration of different ratios of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could significantly down-regulate Atractylodis Macrocephalae Rhizoma's effect on p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells and promote the proliferation of IEC-6 cells. The combined administration of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could down-regulate Atractylodis Macrocephalae Rhizoma's effect on DFMO-treated intestinal epithelial cells (IEC-6).
Animals
;
Atractylodes
;
chemistry
;
Cell Line
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Glycyrrhiza
;
chemistry
;
Intestines
;
drug effects
;
metabolism
;
Rats
;
Rhizome
;
chemistry
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail