1.Effects of High-dose Atorvastatin Pretreatment in Patients with ST-segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Cardiac Magnetic Resonance Study.
Eun Kyoung KIM ; Joo Yong HAHN ; Young Bin SONG ; Sung A CHANG ; Jin Ho CHOI ; Seung Hyuk CHOI ; Sang Chol LEE ; Yeon Hyeon CHOE ; Sang Hoon LEE ; Hyeon Cheol GWON
Journal of Korean Medical Science 2015;30(4):435-441
It is uncertain that atorvastatin pretreatment can reduce myocardial damage in patients undergoing primary percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI). The aim of this study was to investigate the effects of atorvastatin pretreatment on infarct size measured by contrast-enhanced magnetic resonance imaging (CE-MRI) in STEMI patients. Patients undergoing primary PCI for STEMI within 12 hr after symptom onset were randomized to an atorvastatin group (n = 30, 80 mg before PCI and for 5 days after PCI) or a control group (n = 37, 10 mg daily after PCI). The primary end point was infarct size evaluated as the volume of delayed hyperenhancement by CE-MRI within 14 days after the index event. The median infarct size was 19% (IQR 11.1%-31.4%) in the atorvastatin group vs. 16.3% (7.2%-27.2%) in the control group (P = 0.27). The myocardial salvage index (37.1% [26.9%-58.7%] vs. 46.9% [39.9-52.4], P = 0.46) and area of microvascular obstruction (1.1% [0%-2.0%] vs. 0.7% [0%-1.8%], P = 0.37) did not differ significantly between the groups. Frequency of the hemorrhagic and transmural infarctions was not significantly different in the 2 groups. Pretreatment with a high-dose atorvastatin followed by further treatment for 5 days in STEMI patients undergoing primary PCI failed to reduce the extent of myocardial damage or improve myocardial salvage.
Adult
;
Aged
;
Atorvastatin Calcium/*pharmacology
;
Electrocardiography
;
Female
;
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/*pharmacology
;
Image Enhancement
;
*Magnetic Resonance Imaging
;
Male
;
Middle Aged
;
Myocardial Infarction/pathology/*therapy
;
Myocardium/*pathology
;
*Percutaneous Coronary Intervention
;
Prospective Studies
2.Effect of Atorvastatin on Expression of Peroxisome Proliferator-activated Receptor Beta/delta in Angiotensin II-induced Hypertrophic Myocardial Cells In Vitro.
Li SHENG ; Xu YANG ; Ping YE ; Yong-xue LIU ; Chun-guang HAN
Chinese Medical Sciences Journal 2015;30(4):245-251
OBJECTIVETo explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved.
METHODSAn in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensin II (Ang II) stimulation. Before Ang II stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations (0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, mRNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, mRNA and protein expressions of the δ/β peroxisome proliferator-activated receptor (PPAR) subtypes.
RESULTSIt was shown that atorvastatin could ameliorate Ang II-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented mRNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR- δ/β at both the mRNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment.
CONCLUSIONSAtorvastatin could improve Ang II-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.
Angiotensin II ; pharmacology ; Animals ; Atorvastatin Calcium ; pharmacology ; therapeutic use ; Cardiomegaly ; metabolism ; pathology ; prevention & control ; Cells, Cultured ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; PPAR delta ; genetics ; PPAR-beta ; genetics ; Rats ; Rats, Wistar
3.Atorvastatin Attenuates TNF-alpha Production via Heme Oxygenase-1 Pathway in LPS-stimulated RAW264.7 Macrophages.
Xiao Qiao WANG ; Nian Sang LUO ; Zhong Qing Chen SALAH ; Yong Qing LIN ; Miao Ning GU ; Yang Xin CHEN ;
Biomedical and Environmental Sciences 2014;27(10):786-793
OBJECTIVETo assess the effect of atorvastatin on lipopolysaccharide (LPS)-induced TNF-α production in RAW264.7 macrophages.
METHODSRAW264.7 macrophages were treated in different LPS concentrations or at different time points with or without atorvastatin. TNF-α level in supernatant was measured. Expressions of TNF-α mRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HO activity was assayed.
RESULTSLPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1 activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase (MAPK) pathways participate in regulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin on TNF-α expression and production in LPS-stimulated macrophages.
CONCLUSIONAtorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways, suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.
Adjuvants, Immunologic ; pharmacology ; Animals ; Atorvastatin Calcium ; Enzyme Activation ; drug effects ; Heme Oxygenase-1 ; genetics ; metabolism ; Heptanoic Acids ; pharmacology ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; Membrane Proteins ; genetics ; metabolism ; Mice ; Pyrroles ; pharmacology ; Tumor Necrosis Factor-alpha ; metabolism
4.Effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension.
Ping-xian YE ; Ping-zhen YE ; Jian-hua ZHU ; Wei CHEN ; Dan-chen GAO
Journal of Zhejiang University. Medical sciences 2014;43(3):298-304
OBJECTIVETo investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension.
METHODSA randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment.
RESULTSAfter treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05).
CONCLUSIONIn patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.
Aged ; Atorvastatin Calcium ; C-Reactive Protein ; metabolism ; Double-Blind Method ; Endothelins ; blood ; Exercise Tolerance ; drug effects ; Female ; Heart Failure ; complications ; drug therapy ; physiopathology ; Heptanoic Acids ; pharmacology ; Humans ; Hypertension ; complications ; drug therapy ; physiopathology ; Male ; Middle Aged ; Natriuretic Peptide, Brain ; blood ; Prospective Studies ; Pyrroles ; pharmacology
5.Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway.
Na LI ; Qian ZHANG ; Haiyan QIAN ; Chen JIN ; Yuejin YANG ; Runlin GAO
Chinese Medical Journal 2014;127(6):1046-1051
BACKGROUNDThe survival ratio of implanted mesenchymal stem cells (MSCs) in the infarcted myocardium is low. Autophagy is a complex "self-eating" process and can be utilized for cell survival. We have found that atorvastatin (ATV) can effectively activate autophagy to enhance MSCs survival during hypoxia and serum deprivation (H/SD). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway is a non-canonical autophagy pathway. We hypothesized that the MEK/ERK pathway mediated ATV-induced autophagy of MSCs under H/SD.
METHODSMSCs were pretreated with ATV (0.01-10 µmol/L) under H/SD for three hours. For inhibitor studies, the cells were pre-incubated with the MEK1/2 inhibitor U0126. Cell autophagy was assessed by acidic vesicular organelles (AVO)-positive cells using flow cytometry, autophagy related protein using Western blotting and autophagosome using transmission electron microscopy.
RESULTSAutophagy was elevated in the H/SD group compared with the normal group. ATV further enhanced the autophagic activity as well as the phosphorylation of ERK1/2 evidenced by more AVO-positive cells ((8.63 ± 0.63)% vs. (5.77 ± 0.44)%, P < 0.05), higher LC3-II/LC3-I ratio (4.36 ± 0.31 vs. 2.52 ± 0.18, P < 0.05) and more autophagosomes. And treatment with U0126 downregulated the phosphorylation of ERK1/2 and attenuated ATV-induced autophagy.
CONCLUSIONThe MEK/ERK pathway participates in ATV-induced autophagy in MSCs under H/SD, and modulation of the pathway could be a novel strategy to improve MSCs survival.
Animals ; Atorvastatin Calcium ; Autophagy ; drug effects ; Cell Hypoxia ; physiology ; Cells, Cultured ; Flow Cytometry ; Heptanoic Acids ; pharmacology ; MAP Kinase Signaling System ; drug effects ; Male ; Mesenchymal Stromal Cells ; cytology ; drug effects ; ultrastructure ; Microscopy, Electron, Transmission ; Pyrroles ; pharmacology ; Rats
6.Effect of compound Danshen dripping pills combined with atorvastatin on restenosis after angioplasty in rabbits.
Jieli SONG ; Jinpei ZENG ; Yongxia ZHANG ; Pengfei LI ; Lihong ZHANG ; Cibin CHEN
Journal of Southern Medical University 2014;34(9):1337-1341
OBJECTIVETo study the effect of compound Danshen dripping pills and atorvastatin on restenosis after abdominal aorta angioplasty in rabbits.
METHODSRabbit models of abdominal aorta restenosis after angioplasty were established and treated with saline (group A), compound Danshen dripping pills (group B), atorvastatin (group C), or compound Danshen dripping pills plus atorvastatin (group D). HE staining was used to determine the thickness of arterial intimal hyperplasia and assess the morphological changes of the narrowed artery. Immunohistochemistry was employed to detect the expression of nuclear factor-κB (NF-κB) and monocyte chemoattractant protein-1 (MCP-1).
RESULTSCompared with group A, the 3 treatment groups showed significant increased vascular cavity area and reduced intimal area and percentage of intimal hyperplasia (P<0.05). The vascular cavity area, intimal area and percentage of intimal hyperplasia levels differed significantly between group D and groups B and C (P<0.05). Immunohistochemistry showed a significant reduction of the expression rate of NF-κB and MCP-1 in the 3 treatment groups compared with group A (P<0.05), and the reduction was especially obvious in group D (P<0.05).
CONCLUTIONSCompound danshen dripping pills combined with atorvastatin produces better effects than the drugs used alone in inhibiting vascular smooth muscle cell proliferation in rabbits after abdominal aorta angioplasty possibly due to a decreased expression of MCP-1 as a result of NF-κB inhibition.
Angioplasty ; Animals ; Aorta ; pathology ; Atorvastatin Calcium ; Cell Proliferation ; Chemokine CCL2 ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Heptanoic Acids ; pharmacology ; Hyperplasia ; Myocytes, Smooth Muscle ; drug effects ; NF-kappa B ; metabolism ; Phenanthrolines ; Pyrroles ; pharmacology ; Rabbits ; Salvia miltiorrhiza ; chemistry ; Tunica Intima
7.Atorvastatin inhibits platelet aggregation and activation following carotid balloon injury in cholesterol-fed rabbits.
Baowen TONG ; Zhihong LIN ; Liangdi XIE ; Changsheng XU
Journal of Southern Medical University 2014;34(8):1162-1166
OBJECTIVETo investigate the effect of atorvastatin on platelet aggregation and activation in the acute phase following balloon-induced carotid artery injury in rabbits fed cholesterol-enriched diet.
METHODSThirty rabbits were randomly divided into 5 equal groups, namely control group, high-cholesterol group, model group, low-dose (5 mg/kg daily) atorvastatin group, and high-dose (10 mg/kg daily) atorvastatin group. Platelet aggregation rate was measured in the rabbits by turbidimetric platelet aggregometry, and the changes of serum P-selectin and thromboxane B2 (TXB2) levels were detected with enzyme-linked immunosorbent assay (ELISA).
RESULTSCompared with those in the control group, serum P-selectin level increased significantly (P<0.01) but platelet aggregation rate and TXB2 level exhibited no obvious changes in high-cholesterol group. After carotid artery balloon injury, P-selectin and TXB2 levels and platelet aggregation significantly increased in cholesterol-fed rabbits, reaching the peak level at 24 h after the injury (P<0.01). Compared with the model group, low-dose atorvastatin treatment significantly decreased P-selectin and TXB2 levels and inhibited platelet aggregation in cholesterol-fed rabbits following carotid artery balloon injury (P<0.01), and such effects of atorvastatin were more prominent at a higher daily dose of 10 mg/kg (P<0.05).
CONCLUSIONSCarotid artery balloon injury in rabbits fed cholesterol-enriched diet can induce platelet activation and aggregation, which reaches the peak level at 24 h after balloon injury and can be dose-dependently inhibited by atorvastatin in the acute phase following the injury.
Animals ; Atorvastatin Calcium ; Blood Platelets ; Carotid Artery Injuries ; drug therapy ; Cholesterol ; Enzyme-Linked Immunosorbent Assay ; Heptanoic Acids ; pharmacology ; P-Selectin ; metabolism ; Platelet Activation ; Platelet Aggregation ; Pyrroles ; pharmacology ; Rabbits ; Thromboxane B2 ; metabolism
8.Atorvastatin inhibits macrophage-derived foam cell formation by suppressing the activation of PPARγ and NF-κB pathway.
Xiaofeng CHENG ; Xiaoyan LIU ; Lingkun SONG ; Yun HE ; Xiaoqing LI ; Hao ZHANG
Journal of Southern Medical University 2014;34(6):896-900
OBJECTIVETo evaluate whether atorvastatin inhibits oxidized low-density lipoproteins (Ox-LDL)-stimulated foam cell formation from THP-1 macrophages by regulating the activation of peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-κB (NF-κB). Methods THP-1 macrophages were pretreated with 10, 20, or 40 µmol/L atorvastatin for 2 h, and after washing with PBS twice, the cells were incubated with 60 µg/ml of Ox-LDL for 48 h. The quantity of intracellular lipid of the cells was detected with Oil red O staining and enzymatic fluorometric method. The expression of the scavenger receptors of CD36 and SRA were analyzed with Western blotting. We also examined the effect of atorvastatin on adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) expression and the activation of PPARγ and p-iκB, and further assessed the capacity of the macrophages to bind to Dil-oxLDL.
RESULTSAtorvastatin potently inhibited ox-LDL-induced macrophage-derived foam cell formation, down-regulated the expression of CD36 and SRA, and up-regulated the expression of ABCA1. Atorvastatin markedly suppressed the activation of PPARγ and p-iκB in ox-LDL-stimulated THP-1 macrophages (P<0.05) and significantly decreased the Dil-oxLDL-binding capacity of the macrophages (P<0.05).
CONCLUSIONAtorvastatin as an effective anti-atherosclerosis agent can suppress the activation of PPARγ and p-iκB to reduce lipid accumulation in macrophages.
ATP Binding Cassette Transporter 1 ; metabolism ; Atorvastatin Calcium ; Cell Line ; Foam Cells ; cytology ; drug effects ; Heptanoic Acids ; pharmacology ; Humans ; I-kappa B Proteins ; metabolism ; Lipoproteins, LDL ; metabolism ; Macrophages ; cytology ; drug effects ; NF-kappa B ; metabolism ; PPAR gamma ; metabolism ; Pyrroles ; pharmacology ; Signal Transduction ; drug effects ; Transcriptional Activation ; Up-Regulation
9.Atorvastatin reduces myocardial fibrosis in a rat model with post-myocardial infarction heart failure by increasing the matrix metalloproteinase-2/tissue matrix metalloproteinase inhibitor-2 ratio.
Zhe AN ; Guang YANG ; Yu-quan HE ; Ning DONG ; Li-li GE ; Shu-mei LI ; Wen-qi ZHANG
Chinese Medical Journal 2013;126(11):2149-2156
BACKGROUNDThe cholesterol-lowering statin drugs have some non-lipid-lowering effects, such as inhibiting myocardial remodeling. However, the underlying mechanism is still unclear.
METHODSThe left anterior descending coronary artery was ligated to establish a rat model of heart failure, and the rats were divided into a sham operation (SO) group, myocardial infarction model (MI) group, and MI-atorvastatin group. Changes in hemodynamic parameters were recorded after the final drug administration. Histological diagnosis was made by reviewing hematoxylin and eosin (HE) stained tissue. Real-time quantitative polymerase chain reaction (PCR) was performed to determine the expressions of type I and type III collagen, matrix metalloproteinase-2 (MMP-2), and tissue matrix metalloproteinase inhibitor-2 (TIMP-2). Further, primary rat cardiac fibroblasts were cultured and the MTT assay was performed to determine the effect of atorvastatin on cardiac fibroblast proliferation.
RESULTSThe model of heart failure was established and the results of HE staining and Masson's trichrome staining revealed that the rats in the heart failure group showed obvious hyperplasia of fibrotic tissue, which was significantly reduced in the atorvastatin group. Real-time quantitative PCR showed that the MI group showed a significantly increased expression of type I and type III collagen, MMP-2, and TIMP-2, but a significantly reduced MMP-2/TIMP-2 ratio. Compared with the MI group, the atorvastatin group showed significantly reduced expression of type I and III collagen, unchanged expression of MMP-2, significantly reduced expression of TIMP-2, and an increased MMP-2/TIMP-2 ratio. We further found that atorvastatin significantly inhibited the Ang II-induced fibroblast proliferation and the expression of type I and type III collagen in cardiac fibroblasts while increasing the MMP-2/TIMP-2 ratio.
CONCLUSIONSThese data suggest that atorvastatin can inhibit cardiac fibroblast proliferation and enhance collagen degradation by increasing the MMP-2/TIMP-2 ratio, thereby inhibiting the formation of myocardial fibrosis in rats with heart failure after myocardial infarction.
Animals ; Atorvastatin Calcium ; Collagen ; biosynthesis ; Disease Models, Animal ; Female ; Fibrosis ; Heart Failure ; drug therapy ; pathology ; Heptanoic Acids ; pharmacology ; therapeutic use ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Matrix Metalloproteinase 2 ; genetics ; Myocardial Infarction ; complications ; Myocardium ; pathology ; Pyrroles ; pharmacology ; therapeutic use ; Rats ; Rats, Wistar ; Tissue Inhibitor of Metalloproteinase-2 ; genetics ; Ventricular Remodeling ; drug effects
10.The effect of PPARalpha signal channel on atorvastatin inhibiting MMP-9 expression in aging myocytes.
Lei HAN ; Ping YE ; Ming-Gao LI
Chinese Journal of Applied Physiology 2013;29(5):469-472
OBJECTIVETo investigate the correlation between atorvastatin inhibiting the expression level of matrix metalloproteinase 9 (MMP-9) and peroxisome proliferator activated receptor alpha (PPARalpha) signal channel in myocyte of aging rat.
METHODSPrimary cultures of myocyte were got ten from aging rats. Myocyte were divided into control group, DMSO group, atorvastatin group, atorvastatin plus GW6471 group, which treated respectively by cell culture medium, DMSO, atorvastatin, atorvastatin plus GW6471. The expression of MMP-9 mRNA was evaluated by RT-PCR, and content of MMP-9 protein was detected by Western blot.
RESULTS(1) There was no difference between control group and DMSO group in level of MMP-9 mRNA and protein expression (P > 0.05); (2) The level of MMP-9 mRNA and MMP-9 protein expression in atorvastatin group were significantly lower than those in control group (P < 0.01); (3) Both level of MMP-9 mRNA and protein expression in atorvastatin plus GW6471 group were significantly higher than those in atorvastatin group (P < 0.05), but were still lower than those in control group (P < 0.05).
CONCLUSIONAtorvastatin inhibit MMP-9 expression of aging myocytes by PPARalpha signal channel.
Aging ; Animals ; Atorvastatin Calcium ; Cells, Cultured ; Heptanoic Acids ; pharmacology ; Matrix Metalloproteinase 9 ; metabolism ; Muscle Cells ; drug effects ; metabolism ; Oxazoles ; pharmacology ; PPAR alpha ; metabolism ; Pyrroles ; pharmacology ; Rats ; Rats, Wistar ; Signal Transduction ; Tyrosine ; analogs & derivatives ; pharmacology

Result Analysis
Print
Save
E-mail