1.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
2.Cellular differential impact of the Rap1 on atherosclerosis.
Shan-Shan SONG ; Hui-Ru YANG ; Xiao-Li YI ; Jun YU ; Chuan-Ming XU
Acta Physiologica Sinica 2025;77(3):483-492
Cardiovascular diseases are the leading cause of mortality, posing a significant threat to human health due to the high incidence rate. Atherosclerosis, a chronic inflammatory disease, serves as the primary pathological basis for most such conditions. The incidence of atherosclerosis continues to rise, but its pathogenesis has not been fully elucidated. As an important member of the small GTPase superfamily, Ras-association proximate 1 (Rap1) is an important molecular switch involved in the regulation of multiple physiological functions including cell differentiation, proliferation, and adhesion. Rap1 achieves the utility of the molecular switch by cycling between Rap1-GTP and Rap1-GDP. Rap1 may influence the occurrence and development of atherosclerosis in a cell-specific manner. This article summarizes the potential role and mechanism of Rap1 in the progression of atherosclerosis in different cells, aiming to provide new therapeutic targets and strategies for clinical intervention.
Humans
;
Atherosclerosis/metabolism*
;
rap1 GTP-Binding Proteins/physiology*
;
Animals
;
Cell Differentiation
;
Cell Adhesion
;
Cell Proliferation
3.Huotan Jiedu Tongluo Decoction inhibits ferroptosis by regulating Nrf2/GPX4 pathway to ameliorate atherosclerotic lesions in ApoE~(-/-) mice.
Di GAO ; Teng-Hui TIAN ; Ke-Ying YU ; Xiao SHAO ; Wen XUE ; Zhi-Xuan ZHAO ; Yue DENG
China Journal of Chinese Materia Medica 2025;50(7):1908-1919
The purpose of this study was to clarify the effect of Huotan Jiedu Tongluo Decoction on atherosclerosis(AS) injury in ApoE~(-/-) mice by regulating the ferroptosis pathway. Seventy-five ApoE~(-/-) mice were randomly divided into model group, low-, medium-, and high-dose of Huotan Jiedu Tongluo Decoction groups, and evolocumab group(n=15), and 15 C57BL/6J mice were selected as the blank group. Mice in the blank group were fed with a normal diet, and those in the other groups were fed with a high-fat diet to induce AS. From the 9th week, mice in Huotan Jiedu Tongluo Decoction groups were administrated with Huotan Jiedu Tongluo Decoction at corresponding doses by gavage, and those in the blank group and the model group were given an equal volume of distilled water. Mice in the evolocumab group were treated with evolocumab 18.2 mg·kg~(-1 )by subcutaneous injection every 2 weeks. After 8 weeks of continuous intervention, oil red O staining and hematoxylin-eosin(HE) staining were employed to observe the lipid deposition and plaque formation in the aortic root. Masson staining was used to evaluate the collagen content in the aortic root. The serum levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were determined by biochemical kits. The levels of Fe~(2+), superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the aorta were measured by colorimetry. The protein and mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), and acyl-CoA synthetase long chain family member 4(ACSL4) in the aorta were detected by Western blot and RT-qPCR, respectively. The expression of Nrf2, GPX4, and SLC7A11 was localized by immunofluorescence. The results showed that low-, medium-, and high-dose Huotan Jiedu Tongluo Decoction reduced the plaque formation of aortic root and increased the collagen content in AS mice. At the same time, Huotan Jiedu Tongluo Decoction improved the lipid metabolism by lowering the levels of TC, LDL-C, and TG and elevating the level of HDL-C in the serum. Huotan Jiedu Tongluo Decoction enhanced the antioxidant capacity by elevating the levels of GSH and SOD and lowering the level of MDA in the aorta and inhibiting the accumulation of Fe~(2+) in the aorta. In addition, Huotan Jiedu Tongluo Decoction up-regulated the protein and mRNA levels of Nrf2, GPX4, and SLC7A11, while down-regulating the protein and mRNA levels of ACSL4. In summary, Huotan Jiedu Tongluo Decoction can effectively alleviate AS lesions in ApoE~(-/-) mice by activating the Nrf2/GPX4 pathway, reducing lipid peroxidation, and inhibiting ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Mice, Inbred C57BL
;
Apolipoproteins E/metabolism*
;
Male
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Mice, Knockout
4.Experimental study on Jianpi Qutan Formula regulating M1/M2 macrophage polarization to improve atherosclerosis.
Xiao-Meng HAN ; Yue LIU ; Yu ZHAO ; Mao-Sheng YU ; Mi TAN
China Journal of Chinese Materia Medica 2025;50(6):1610-1617
To investigate the mechanism of Jianpi Qutan Formula in regulating the balance between classically activated macrophages(M1) and alternatively activated macrophages(M2) in atherosclerotic plaques through phosphorylation and activation of the signal transducer and activator of transcription 6(STAT6), thereby reducing inflammation, increasing plaque stability, and exerting anti-atherosclerosis(AS) effects. An AS model was established by feeding apolipoprotein E(ApoE)~(-/-) mice with atherosclerotic chow for 8 weeks. The ApoE~(-/-) mice were randomly divided into a model group(Mod group), a Jianpi Qutan Formula group(JPQT group, 8.97 g·kg~(-1)), and a Atorvastatin Calcium Tablets group(ATO group, 1.3 mg·kg~(-1)) according to a random table method, with 10 mice in each group. Additionally, 10 male C57BL/6J mice of the same age, fed with a normal diet, were set as the control group(Con group). The JPQT and ATO groups received their respective treatments via oral gavage for 8 consecutive weeks, while the Con and Mod groups were administered an equivalent volume of saline. Body weight was continuously monitored, and after blood collection, total cholesterol(TC) and triglyceride(TG) levels in the serum of each group were compared. Hematoxylin-eosin(HE) staining and oil red O staining were used to observe plaque formation in aortic tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression levels of pro-inflammatory cytokines interleukin(IL)-6 and IL-12, as well as the anti-inflammatory cytokine IL-10. Immunofluorescence was used to detect the positive expression of aortic cluster of differentiation(CD)86 and CD206. Western blot analysis was conducted to detect the protein expression levels of aortic inducible nitric oxide synthase(iNOS), arginase 1(Arg1), STAT6, and p-STAT6. Compared to the Con group, the Mod group exhibited increased body weight and blood lipid levels, disordered aortic structure, significant AS plaque formation accompanied by extensive lipid deposition, and elevated serum levels of pro-inflammatory cytokines IL-6 and IL-12, as well as elevated CD86 and iNOS protein levels. In contrast, the serum levels of the anti-inflammatory cytokine IL-10, along with the protein expression levels of CD206, Arg1, and p-STAT6/STAT6, were reduced. Compared to the Mod group, the drug intervention groups showed improvements in body weight and lipid metabolism, with a more significant improvement in aortic structure, reduced lipid accumulation, decreased serum levels of IL-6 and IL-12, and lower CD86 and iNOS protein levels. Meanwhile, levels of IL-10, CD206, Arg1, and p-STAT6/STAT6 increased. Jianpi Qutan Formula improves AS by regulating the imbalance in M1/M2 macrophage polarization, and its mechanism is likely closely related to the activation of the STAT6 signaling pathway.
Animals
;
Atherosclerosis/metabolism*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Macrophages/cytology*
;
Mice, Inbred C57BL
;
STAT6 Transcription Factor/immunology*
;
Humans
;
Apolipoproteins E/genetics*
;
Interleukin-6/immunology*
5.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
6.ATF3 regulates inflammatory response in atherosclerotic plaques in mice through the NF-κB signaling pathway.
Bing XIA ; Jin PENG ; Jiuyang DING ; Jie WANG ; Guowei TANG ; Guojie LIU ; Yun WANG ; Changwu WAN ; Cuiyun LE
Journal of Southern Medical University 2025;45(6):1131-1142
OBJECTIVES:
To investigate the role of activating transcription factor 3 (ATF3) in atherosclerotic plaques for regulating inflammatory responses during atherosclerosis (AS) progression.
METHODS:
Human coronary artery specimens from autopsy cases were examined for ATF3 protein expression and localization using immunofluorescence staining and Western blotting. Apolipoprotein E-deficient (ApoE-/-) mouse models of AS induced by high-fat diet (HFD) feeding for 12 weeks were subjected to tail vein injection of adeno-associated virus serotype 9 (AAV9) to knock down ATF3 expression. After an additional 5 weeks of HFD feeding, the mice were euthanized for analyzing structural changes of the aortic plaques, and the expression levels of ATF3, inflammatory factors (CD45, CD68, IL-1β, and TNF-α), and NF-κB pathway proteins (P-IKKα/β and P-NF-κB p65) were detected. In the cell experiment, THP-1-derived foam cells were transfected with an ATF3-overexpressing plasmid or an ATF3-specific siRNA to validate the relationship between ATF3 and NF‑κB signaling.
RESULTS:
In human atherosclerotic plaques, ATF3 expression was significantly elevated and partially co-localized with CD68. ATF3 knockout in ApoE-/- mice significantly increased aortic plaque volume, upregulated the inflammatory factors, enhanced phosphorylation of the NF‑κB pathway proteins, and increased the expressions of VCAM1, MMP9, and MMP2 in the plaques. In THP-1-derived foam cells, ATF3 silencing caused activation of the NF‑κB pathway, while ATF3 overexpression suppressed the activity of the NF-κB pathway.
CONCLUSIONS
AS promotes ATF3 expression, and ATF3 deficiency exacerbates AS progression by enhancing plaque inflammation via activating the NF-κB pathway, suggesting the potential of ATF3 as a therapeutic target for AS.
Animals
;
Activating Transcription Factor 3/metabolism*
;
Signal Transduction
;
NF-kappa B/metabolism*
;
Humans
;
Mice
;
Plaque, Atherosclerotic/metabolism*
;
Inflammation/metabolism*
;
Apolipoproteins E
;
Atherosclerosis/metabolism*
;
Diet, High-Fat
7.Disrupting atherosclerotic plaque formation via the "qi meridian-blood channel": mechanism of Jiangzhi Huaban Decoction for regulating hepatic reverse cholesterol transport to improve atherosclerosis.
Hongyang WANG ; Wenyi ZHU ; Xushen CHEN ; Tong ZHANG ; Zhiwei CAO ; Jin WANG ; Bo XIE ; Qiang LIU ; Xuefeng REN
Journal of Southern Medical University 2025;45(9):1818-1829
OBJECTIVES:
To explore the molecular mechanism of Jiangzhi Huaban Decoction (JZHBD) for improving atherosclerosis through the "qi meridian-blood channels" pathway.
METHODS:
ApoE-/- mouse models of atherosclerosis were established by high-fat diet feeding for 8 weeks, with C57BL/6 mice on a normal diet as the controls. Forty ApoE-/- mouse models were randomized into model group, low-, medium-, and high-dose JZHBD treatment groups, and atorvastatin treatment group (n=8) for their respective treatments for 8 weeks. The changes in body weight and overall condition of the mice were monitored weekly. After the treatments, serum levels of TC, TG, HDL-C, LDL-C, TBA, ALT, and AST of the mice were measured, pathological changes in the liver and aortic root plaques were examined with HE staining, and lipid accumulation in the liver and aortic wall was assessed using Oil Red O staining. The core molecular mechanism was studied through transcriptomics, and the expressions of the key pathway proteins were confirmed using Western blotting and immunohistochemistry.
RESULTS:
Treatment with JZHBD significantly reduced blood lipid and total bile acid levels, improved liver function and hepatic steatosis, and decreased aortic lipid deposition and plaque area in the mouse models of atherosclerosis. Transcriptomic analysis suggested that the therapeutic mechanism of JZHBD involved reverse cholesterol transport, PPAR signaling, and the inflammatory pathways. In atherosclerotic mice, JZHBD treatment obviously up-regulated hepatic expressions of PPARγ, LXRα, ABCA1, ABCG1, and CYP7A1, down-regulated hepatic expressions of p-p65/p65, IL-6, IL1β in the liver, increased ABCG5 and ABCG8 expressions in the intestines, and decreased ICAM-1 and VCAM-1 expressions in the aortic plaques.
CONCLUSIONS
JZHBD improves atherosclerotic vascular damage and plaque formation possibly by regulating hepatic reverse cholesterol transport and inflammation via modulating the hepatic PPARγ/LXRα/NF-κB signaling pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Inbred C57BL
;
Plaque, Atherosclerotic/metabolism*
;
Liver/metabolism*
;
Mice
;
Atherosclerosis/metabolism*
;
Cholesterol/metabolism*
;
PPAR gamma/metabolism*
;
Male
;
Diet, High-Fat
;
Biological Transport
8.Host-microbe co-metabolism system as potential targets: the promising way for natural medicine to treat atherosclerosis.
Yun WANG ; Ziwei ZHOU ; Haiping HAO ; Lijuan CAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):790-800
The host-microbe co-metabolism system, generating diverse exogenous and endogenous bioactive molecules that influence the host's immune and metabolic functions, plays a crucial role in the pathogenesis of atherosclerosis. Recent studies have elucidated the interaction between natural medicines and this co-metabolism system. Upon oral administration, natural medicine ingredients can undergo transformation by gut microbiota, potentially enhancing their bioavailability or anti-atherogenic efficacy. Furthermore, natural medicines can exert anti-atherogenic effects via modulation of endogenous host-microbe co-metabolism. This review presents an updated understanding of the dual association between natural medicines and host-microbe co-metabolites. It explores the critical function of microbial exogenous metabolites derived from natural medicines and uncovers the mechanisms underlying natural medicines' intervention on key nodes of endogenous host-microbe co-metabolism. These insights may offer new perspectives for cardiovascular disease (CVD) treatment and guide future drug discovery efforts.
Humans
;
Atherosclerosis/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Biological Products/therapeutic use*
;
Animals
;
Host Microbial Interactions/drug effects*
9.Mechanism of Tanyu Tongzhi Formula in treatment of atherosclerosis by maintaining vascular homeostasis based on TGF-β signaling pathway.
Xiao-Shan CUI ; Hui-Yu ZHANG ; Yuan-Yuan CHEN ; Liang LI ; Jia-Ming GAO ; Wei HAO ; Cheng-Zhi XIE ; Jian-Xun LIU ; Jian-Hua FU ; Hao GUO
China Journal of Chinese Materia Medica 2024;49(23):6429-6438
This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.2 mg·kg~(-1)), a Huatan(phlegm-resolving) group(10.4 mg·kg~(-1)), and a Quyu(blood stasis-resolving) group(7.8 mg·kg~(-1)), with 8 mice in each group. Except for the normal group, all other groups continued to be fed a high-fat diet for 8 weeks to maintain the AS model, and then the mice were treated by gavage for 8 weeks. Plasma levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), interleukin-1β(IL-1β), and interleukin-18(IL-18) were measured using enzyme-linked immunosorbent assay(ELISA). Hematoxylin and eosin(HE) staining, oil red O staining, and Russell-Movat pentachrome staining were performed to observe the pathological changes in the aortic tissue. The proportions of aortic plaque area, lipid-stained area, collagen fibers, and elastic fibers were calculated. Immunofluorescence was used to detect the protein expression levels of matrix metalloproteinase 2(MMP2) and tissue inhibitor of metalloproteinases 2(TIMP2). Western blot was used to detect the protein expression levels of TGF-β1, TGF-β2, Smad2/3, and Smad7 in aortic tissue. Real-time fluorescence quantitative PCR(RT-qPCR) was used to measure the mRNA expression levels of TGF-β receptor(TGF-βR), TGF-β1, Smad2/3, Smad7, intercellular adhesion molecule-1(ICAM-1), and vascular cell adhesion molecule-1(VCAM-1) in aortic tissue. The results showed that compared with the normal control group, the model group had increased plasma TC and LDL-C, significantly decreased HDL-C, and significantly elevated plasma IL-1β and IL-18 levels. The model group also exhibited an increased proportion of aortic plaque area, lipid-stained area, and collagen fiber area, along with significantly upregulated MMP2 and downregulated TIMP2 expression in the aortic arch. Additionally, the expression levels of TGF-βR, TGF-β1, and p-Smad2/3 proteins and mRNA in the aortic tissue were significantly elevated, while Smad7 expression was decreased. Compared with the model group, the Tanyu Tongzhi group showed significantly reduced plasma TC and LDL-C levels, significantly increased HDL-C levels, and significantly decreased plasma IL-1β and IL-18 levels. The Tanyu Tongzhi group also exhibited a significant reduction in aortic plaque size and severity, a significant downregulation of MMP2 expression in the aortic arch, and significantly decreased ICAM-1 and VCAM-1 mRNA expression levels. Moreover, the Tanyu Tongzhi group demonstrated significantly reduced expression levels of TGF-β1 and p-Smad2/3 proteins and mRNA in the aortic tissue, and an increased expression level of Smad7 protein to varying degrees. Compared with the Tanyu Tongzhi group, the Quyu group had significantly higher LDL-C levels and elevated plasma IL-1β and IL-18 levels. The Huatan group showed upregulated MMP2 expression and downregulated TIMP2 expression in the aortic arch. In conclusion, Tanyu Tongzhi Formula, which is composed based on the pathogenesis of phlegm and blood stasis, maintains vascular homeostasis by primarily regulating lipid metabolism and controlling inflammatory factors through the Huatan group, and maintaining vascular wall permeability, inhibiting plaque development, and stabilizing plaques through the Quyu group. The mechanism of action may involve inhibiting TGF-β1 expression in the aorta, reducing Smad2/3 phosphorylation, and simultaneously increasing Smad7 expression.
Animals
;
Atherosclerosis/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Transforming Growth Factor beta/genetics*
;
Humans
;
Homeostasis/drug effects*
;
Aorta/metabolism*
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
10.The novel anthraquinone compound Kanglexin prevents endothelial-to-mesenchymal transition in atherosclerosis by activating FGFR1 and suppressing integrin β1/TGFβ signaling.
Yixiu ZHAO ; Zhiqi WANG ; Jing REN ; Huan CHEN ; Jia ZHU ; Yue ZHANG ; Jiangfei ZHENG ; Shifeng CAO ; Yanxi LI ; Xue LIU ; Na AN ; Tao BAN ; Baofeng YANG ; Yan ZHANG
Frontiers of Medicine 2024;18(6):1068-1086
Endothelial-mesenchymal transition (EndMT) disrupts vascular endothelial integrity and induces atherosclerosis. Active integrin β1 plays a pivotal role in promoting EndMT by facilitating TGFβ/Smad signaling in endothelial cells. Here, we report a novel anthraquinone compound, Kanglexin (KLX), which prevented EndMT and atherosclerosis by activating MAP4K4 and suppressing integrin β1/TGFβ signaling. First, KLX effectively counteracted the EndMT phenotype and mitigated the dysregulation of endothelial and mesenchymal markers induced by TGFβ1. Second, KLX suppressed TGFβ/Smad signaling by inactivating integrin β1 and inhibiting the polymerization of TGFβR1/2. The underlying mechanism involved the activation of FGFR1 by KLX, resulting in the phosphorylation of MAP4K4 and Moesin, which led to integrin β1 inactivation by displacing Talin from its β-tail. Oral administration of KLX effectively stimulated endothelial FGFR1 and inhibited integrin β1, thereby preventing vascular EndMT and attenuating plaque formation and progression in the aorta of atherosclerotic Apoe-/- mice. Notably, KLX (20 mg/kg) exhibited superior efficacy compared with atorvastatin, a clinically approved lipid-regulating drug. In conclusion, KLX exhibited potential in ameliorating EndMT and retarding the formation and progression of atherosclerosis through direct activation of FGFR1. Therefore, KLX is a promising candidate for the treatment of atherosclerosis to mitigate vascular endothelial injury.
Animals
;
Atherosclerosis/prevention & control*
;
Mice
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Signal Transduction/drug effects*
;
Anthraquinones/pharmacology*
;
Humans
;
Integrin beta1/metabolism*
;
Epithelial-Mesenchymal Transition/drug effects*
;
Male
;
Transforming Growth Factor beta/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Human Umbilical Vein Endothelial Cells/drug effects*

Result Analysis
Print
Save
E-mail