1.Research progress on calcium activities in astrocyte microdomains.
Fu-Sheng DING ; Si-Si YANG ; Liang ZHENG ; Dan MU ; Zhu HUANG ; Jian-Xiong ZHANG
Acta Physiologica Sinica 2025;77(3):534-544
Astrocytes are a crucial type of glial cells in the central nervous system, not only maintaining brain homeostasis, but also actively participating in the transmission of information within the brain. Astrocytes have a complex structure that includes the soma, various levels of processes, and end-feet. With the advancement of genetically encoded calcium indicators and imaging technologies, researchers have discovered numerous localized and small calcium activities in the fine processes and end-feet. These calcium activities were termed as microdomain calcium activities, which significantly differ from the calcium activities in the soma and can influence the activity of local neurons, synapses, and blood vessels. This article elaborates the detection and analysis, characteristics, sources, and functions of microdomain calcium activities, and discusses the impact of aging and neurodegenerative diseases on these activities, aiming to enhance the understanding of the role of astrocytes in the brain and to provide new insights for the treatment of brain disorders.
Astrocytes/cytology*
;
Humans
;
Animals
;
Calcium/metabolism*
;
Calcium Signaling/physiology*
;
Brain/physiology*
;
Aging/physiology*
;
Membrane Microdomains/physiology*
;
Neurodegenerative Diseases/physiopathology*
2.Berberine promotes expression of AQP4 in astrocytes by regulating production of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance.
Xue-Ling LIN ; Ying LI ; Meng-Qing GUO ; Yan-Jun ZHANG ; Qing-Sheng YIN ; Peng-Wei ZHUANG
China Journal of Chinese Materia Medica 2025;50(3):768-775
This study aims to explore the role and mechanism of berberine in promoting the expression of aquaporin 4(AQP4) in astrocytes by regulating the expression of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance(IR). The IR-HepG2 cell model was established with 1×10~(-6) mol·L~(-1) insulin. With metformin as the positive control, the safe concentrations of berberine and metformin were screened by cell counting kit-8(CCK-8) and lactate dehydrogenase(LDH) leakage assays, and the effect of berberine on the IR of HepG2 cells was evaluated by glucose consumption. NanoSight was used to measure the particle size and concentration of exosomes secreted by HepG2 cells in each group. HepG2 cell-derived exosomes in each group were incubated with astrocytes for 24 h, and the protein and mRNA levels of AQP4 in HA1800 cells were determined by Western blot and qRT-PCR, respectively. qRT-PCR was performed to determine the expression of miR-383-5p in HepG2 cell-derived exosomes and HA1800 cells after co-incubation. Western blotting was employed to determine the expression levels of miRNAs and proteins associated with exosome production and release in HepG2 cells. The results showed that 10 μmol·L~(-1) berberine and 1 mmol·L~(-1) metformin significantly alleviated the IR of HepG2 cells and reduced the concentration of exosomes in HepG2 cells. The exosomes of HepG2 cells treated with berberine and metformin significantly up-regulated the protein and mRNA levels of AQP4 in HA1800 cells. The mRNA level of miR-383-5p in HepG2 cell exosomes and HA1800 cells co-incubated with berberine and metformin decreased significantly. The intervention with berberine and metformin significantly down-regulated the expression of proteins associated with the production of miRNAs(Dicer, Drosha) as well as the production(Alix, Vps4A) and release(Rab35, VAMP3) of exosomes in IR-HepG2 cells. In conclusion, berberine can promote the expression of AQP4 in astrocytes by inhibiting the production and release of miR-383-5p in HepG2-derived exosomes under IR.
Humans
;
MicroRNAs/metabolism*
;
Berberine/pharmacology*
;
Hep G2 Cells
;
Exosomes/genetics*
;
Aquaporin 4/metabolism*
;
Insulin Resistance
;
Astrocytes/drug effects*
3.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
4.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
5.Astrocytes promote oligodendrocyte precursor cell proliferation via Cx47-mediated regulation of exosome-derived CHI3L1 secretion.
Xiaoyan ZHANG ; Nannan CHENG ; Yan PENG
Journal of Central South University(Medical Sciences) 2025;50(4):573-585
OBJECTIVES:
Neurodegenerative diseases are closely associated with myelin loss, and the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) are crucial to remyelination. However, the regulatory mechanisms involved remain incompletely understood. This study aims to investigate how astrocytes (ASTs) regulate the secretion of chitinase-3-like protein 1 (CHI3L1) via connexin 47 (Cx47)-mediated exosome signaling, and its subsequent effect on OPC proliferation.
METHODS:
Primary cells were isolated from postnatal day 1 Sprague-Dawley (P1SD) rats to establish 3 culture conditions: OPCs alone (Group O), OPCs in direct contact with ASTs (Group C), and OPCs cultured with AST-conditioned medium (Group A). Cellular morphology and proliferation were assessed using optical microscopy, 5-ethynyl-2'- deoxyuridine (EdU) incorporation, and flow cytometry. RNA sequencing (RNA-Seq) and bioinformatics analysis (BA) were conducted to identify differentially expressed genes (DEGs) among groups. Protein expression and cell cycle distribution were analyzed by Western blotting (WB) and flow cytometry. Exosomes were isolated and purified via differential centrifugation, characterized by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), and CHI3L1 expression in exosomes was verified via WB. Cx47 was silenced using small interfering RNA (siRNA) to evaluate its effect on OPC proliferation and exosome secretion. Artificial exosomes were constructed by encapsulating CHI3L1 in single unilamellar vesicles (SUVs), whose structure and size were validated by NTA and TEM. Following Cx47 knockdown, artificial exosomes were added back, and OPC proliferation was assessed via flow cytometry and EdU assay.
RESULTS:
Direct co-cultured with ASTs (Group C) resulted in significantly enhanced OPC proliferation compared to the Group O and Group A (P<0.05). RNA-Seq and WB analyses revealed that ASTs promote OPC proliferation and exosome secretion enriched in CHI3L1 through Cx47. Cx47 knockdown by siRNA led to significant decreases in OPC proliferation and exosome release (P<0.05). The inhibitory effect of Cx47 silencing on OPC proliferation was partially reversed by supplementation with either isolated exosomes or exogenous CHI3L1.
CONCLUSIONS
This study reveals a novel mechanism by which ASTs regulate OPC proliferation: Through direct contact, ASTs enhance the secretion of CHI3L1-rich exosomes via Cx47, thereby converting intercellular contact signals into secretory signals that promote OPC proliferation. As a key exosomal molecule, CHI3L1 may play an important role in neural function and remyelination and warrants further investigation.
Animals
;
Exosomes/metabolism*
;
Cell Proliferation
;
Rats, Sprague-Dawley
;
Rats
;
Connexins/genetics*
;
Oligodendrocyte Precursor Cells/metabolism*
;
Astrocytes/metabolism*
;
Chitinase-3-Like Protein 1/metabolism*
;
Cells, Cultured
;
Cell Differentiation
6.Mechanisms of spinal microglia and astrocytes in exercise-induced analgesia.
Shuang HU ; Haojun YOU ; Jing LEI
Journal of Central South University(Medical Sciences) 2025;50(8):1455-1464
Exercise-induced analgesia (EIA) refers to the elevation of pain thresholds and reduction in sensitivity to noxious stimuli achieved through exercise training. As a non-pharmacological treatment strategy, exercise therapy has demonstrated positive effects on both acute and chronic pain. Increasing evidence indicates that modulation of glial cell activity is an important mechanism underlying analgesia. Spinal glial cells contribute to the development and maintenance of pathological pain by promoting pain signal transmission through inflammatory responses and synaptic remodeling. Exercise can differentially regulate microglia and astrocyte activity, inhibiting multiple inflammatory signaling pathways, such as P2X4/P2X7 purinergic receptors, brain-derived neurotrophic factor (BDNF)/phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR), interleukin (IL)-6/Janus kinase (JAK) 2/signal transducer and activator of transcription 3 (STAT3), p38-mitogen-activated protein kinases (MAPK), and Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), thereby reducing the release of pro-inflammatory cytokines, decreasing inflammatory and nociceptive hypersensitivity, and alleviating pathological pain. This review also summarized the effects of different exercise intensities, durations, and frequencies on glial cell responses in order to provide a theoretical foundation for optimizing exercise-based interventions for pathological pain conditions.
Humans
;
Microglia/metabolism*
;
Astrocytes/metabolism*
;
Exercise/physiology*
;
Signal Transduction
;
Analgesia/methods*
;
Spinal Cord/cytology*
;
Exercise Therapy
;
Pain Management/methods*
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
7.Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules.
Pengwei HUANG ; Jie CHEN ; Jinhu ZOU ; Xuefeng GAO ; Hong CAO
Journal of Southern Medical University 2025;45(2):304-312
OBJECTIVES:
To explore the effect of quercetin for mitigating HIV-1 gp120-induced astrocyte neurotoxicity and its underlying mechanism.
METHODS:
Primary rat astrocytes were isolated and treated with quercetin, HIV-1 gp120, or gradient concentrations of quercetin combined with HIV-1 gp120. The formation of stress granules (SGs) in the treated cells was observed with immunofluorescence assay, and the levels of oxidative stress markers and protein expressions were measured using specific assay kits and Western blotting. HIV-1 gp120 transgenic mice were treated with quercetin (50 mg/kg) by gavage for 4 weeks, and the changes in cognitive functions and oxidative stress levels were examined by behavioral assessments, oxidative stress index analysis in serum, and immunohistochemical and Western blotting of the brain tissue.
RESULTS:
In primary rat astrocytes, treatment with quercetin significantly reduced HIV-1 gp120-induced SG formation, increased the levels of antioxidant indexes, decreased the levels of oxidative substances, and up-regulated protein level associated with SG depolymerization. In the transgenic mouse models, quercetin obviously improved the cognitive function of the rats, reduced oxidative stress levels, and promoted the expression of proteins associate with SG depolymerization in the brain tissues.
CONCLUSIONS
Quercetin mitigates HIV-1 gp120-induced astrocyte neurotoxicity and cognitive function impairment by inhibiting oxidative stress, enhancing expressions of SG depolymerization-related proteins, and promoting SG disassembly, suggesting the value of quercetin as a potential therapeutic agent for neuroprotection in HIV-associated neurocognitive disorders.
Animals
;
Quercetin/pharmacology*
;
Astrocytes/metabolism*
;
HIV Envelope Protein gp120
;
Oxidative Stress/drug effects*
;
Rats
;
Stress Granules/drug effects*
;
Mice
;
Mice, Transgenic
;
Rats, Sprague-Dawley
;
Cells, Cultured
8.Activation of astrocytes in the dorsomedial hypothalamus accelerates sevoflurane anesthesia emergence in mice.
Shuting GUO ; Fuyang CAO ; Yongxin GUO ; Yanxiang LI ; Xinyu HAO ; Zhuoning ZHANG ; Zhikang ZHOU ; Li TONG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):751-759
OBJECTIVES:
To investigate the regulatory role of astrocytes in the dorsomedial hypothalamus (DMH) during sevoflurane anesthesia emergence.
METHODS:
Forty-two male C57BL/6 mice were randomized into 6 groups (n=7) for assessing astrocyte activation in the dorsomedial hypothalamus (DMH) under sevoflurane anesthesia. Two groups of mice received microinjection of agfaABC1D promoter-driven AAV2 vector into the DMH for GCaMP6 overexpression, and the changes in astrocyte activity during sevoflurane or air inhalation were recorded using calcium imaging. For assessing optogenetic activation of astrocytes, another two groups of mice received microinjection of an optogenetic virus or a control vector into the DMH with optic fiber implantation, and sevoflurane anesthesia emergence was compared using behavioral experiments. In the remaining two groups, electroencephalogram (EEG) recording during sevoflurane anesthesia emergence was conducted after injection of the hChR2-expressing and control vectors. Anesthesia induction and recovery were assessed by observing the righting reflex. EEG data were recorded under 2.0% sevoflurane to calculate the burst suppression ratio (BSR) and under 1.5% sevoflurane for power spectrum analysis. Immunofluorescence staining was performed to visualize the colocalization of GFAP-positive astrocytes with viral protein signals.
RESULTS:
Astrocyte activity in the DMH decreased progressively as sevoflurane concentration increased. During 2.0% sevoflurane anesthesia, the mice injected with the ChR2-expressing virus exhibited a significantly shortened wake-up time (P<0.05), and optogenetic activation of the DMH astrocytes led to a marked reduction in BSR (P<0.001). Under 1.5% sevoflurane anesthesia, optogenetic activation resulted in a significant increase in EEG gamma power and a significant decrease in delta power in ChR2 group (P<0.01).
CONCLUSIONS
Optogenetic activation of DMH astrocytes facilitates sevoflurane anesthesia emergence but does not significantly influence anesthesia induction. These findings offer new insights into the mechanisms underlying anesthesia emergence and may provide a potential target for accelerating postoperative recovery and managing anesthesia-related complications.
Animals
;
Astrocytes/physiology*
;
Sevoflurane
;
Mice, Inbred C57BL
;
Mice
;
Male
;
Electroencephalography
;
Anesthetics, Inhalation/pharmacology*
;
Hypothalamus/cytology*
;
Anesthesia Recovery Period
;
Methyl Ethers/pharmacology*
9.Electroacupuncture combined with rehabilitation training improves neurological function of mice with cerebral ischemia by promoting astrocyte transdifferentiation.
Dongning TANG ; Yunyun KANG ; Wenjie HE ; Qing XIA
Journal of Southern Medical University 2025;45(7):1434-1441
OBJECTIVES:
To explore the effects of acupuncture combined with rehabilitation training for promoting transdifferentiation of astrocytes into neurons in mice after cerebral ischemia.
METHODS:
Male C57/BL6J mice were subjected to intracerebral microinjection of an adeno-associated virus carrying the GFAP promoter for NeuroD1 and Ngn2 overexpression in the astrocytes, followed 3 or 12 days later by electrocoagulation of the distal middle cerebral artery. After modeling, the mice were randomly divided into model group without interventions and intervention group treated with electroacupuncture at the acupoints Baihui (GV20), left Hegu (LI4), Neiguan (PC6), Zusanli (ST36), and Yanglingquan (GB34) 24 h after surgery. The mice in the intervention group were housed individually in cages with running wheels, and their activity was recorded every 24 h. Neurological function scores of the mice were assessed on the 1st, 14th, and 21st days after modeling. Transdifferentiation of astrocytes in the target brain regions was observed using double immunofluorescence staining.
RESULTS:
Compared with those in the model group, the mice receiving eletroacupuncture and rehabilitation training showed significant improvement of neurological deficits at 14 and 21 days after modeling. The GFAP promoter of the AAV2/5 vector specifically labeled the local astrocytes, and compared with that that in the model group, the number of AAV-positive cells colabeled with the neuronal marker DCX significantly increased after 14 days of electroacupuncture and rehabilitation intervention, and the number of AAV-positive cells colabeled with the neuronal marker NeuN significantly increased after 21 days of intervention.
CONCLUSIONS
In mice with cerebral ischemia, electroacupuncture and rehabilitation training can promote transdifferentiation of astrocytes into neurons in the ischemic brain region, and the efficiency of transdifferentiation is positively correlated with the improvement of motor function.
Animals
;
Electroacupuncture
;
Astrocytes/cytology*
;
Cell Transdifferentiation
;
Male
;
Mice, Inbred C57BL
;
Brain Ischemia/physiopathology*
;
Mice
;
Neurons/cytology*
;
Doublecortin Protein
10.From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury.
Yimin YUAN ; Hong LIU ; Ziwei DAI ; Cheng HE ; Shangyao QIN ; Zhida SU
Neuroscience Bulletin 2025;41(1):131-154
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Astrocytes/drug effects*
;
Humans
;
Animals
;
Central Nervous System/pathology*
;
Central Nervous System Diseases/physiopathology*

Result Analysis
Print
Save
E-mail