1.Berberine promotes expression of AQP4 in astrocytes by regulating production of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance.
Xue-Ling LIN ; Ying LI ; Meng-Qing GUO ; Yan-Jun ZHANG ; Qing-Sheng YIN ; Peng-Wei ZHUANG
China Journal of Chinese Materia Medica 2025;50(3):768-775
This study aims to explore the role and mechanism of berberine in promoting the expression of aquaporin 4(AQP4) in astrocytes by regulating the expression of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance(IR). The IR-HepG2 cell model was established with 1×10~(-6) mol·L~(-1) insulin. With metformin as the positive control, the safe concentrations of berberine and metformin were screened by cell counting kit-8(CCK-8) and lactate dehydrogenase(LDH) leakage assays, and the effect of berberine on the IR of HepG2 cells was evaluated by glucose consumption. NanoSight was used to measure the particle size and concentration of exosomes secreted by HepG2 cells in each group. HepG2 cell-derived exosomes in each group were incubated with astrocytes for 24 h, and the protein and mRNA levels of AQP4 in HA1800 cells were determined by Western blot and qRT-PCR, respectively. qRT-PCR was performed to determine the expression of miR-383-5p in HepG2 cell-derived exosomes and HA1800 cells after co-incubation. Western blotting was employed to determine the expression levels of miRNAs and proteins associated with exosome production and release in HepG2 cells. The results showed that 10 μmol·L~(-1) berberine and 1 mmol·L~(-1) metformin significantly alleviated the IR of HepG2 cells and reduced the concentration of exosomes in HepG2 cells. The exosomes of HepG2 cells treated with berberine and metformin significantly up-regulated the protein and mRNA levels of AQP4 in HA1800 cells. The mRNA level of miR-383-5p in HepG2 cell exosomes and HA1800 cells co-incubated with berberine and metformin decreased significantly. The intervention with berberine and metformin significantly down-regulated the expression of proteins associated with the production of miRNAs(Dicer, Drosha) as well as the production(Alix, Vps4A) and release(Rab35, VAMP3) of exosomes in IR-HepG2 cells. In conclusion, berberine can promote the expression of AQP4 in astrocytes by inhibiting the production and release of miR-383-5p in HepG2-derived exosomes under IR.
Humans
;
MicroRNAs/metabolism*
;
Berberine/pharmacology*
;
Hep G2 Cells
;
Exosomes/genetics*
;
Aquaporin 4/metabolism*
;
Insulin Resistance
;
Astrocytes/drug effects*
2.Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.
Bai-Ling HOU ; Chen-Chen WANG ; Ying LIANG ; Ming JIANG ; Yu-E SUN ; Yu-Lin HUANG ; Zheng-Liang MA
Chinese journal of integrative medicine 2025;31(6):499-505
OBJECTIVE:
To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
METHODS:
C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve. On day 14 after CCI modeling or sham operation, mice were intrathecal injected with 5 µL of 10% DMSO or 10 mg/kg DHC (5 µL) into the 5th to 6th lumbar intervertebral space (L5-L6). Pregnant ICR mice were sacrificed for isolating primary spinal neurons on day 14 of embryo development for in vitro experiment. Pain behaviors were evaluated by measuring the paw withdrawal mechanical threshold (PWMT) of mice. Immunofluorescence was used to observe the activation of astrocytes and microglia in mouse spinal cord. Protein expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), phosphorylation of N-methyl-D-aspartate receptor subunit 2B (p-NR2B), and NR2B in the spinal cord or primary spinal neurons were detected by Western blot.
RESULTS:
In CCI-induced neuropathic pain model, mice presented significantly decreased PWMT, activation of glial cells, overexpressions of iNOS, TNF-α, IL-6, and higher p-NR2B/NR2B ratio in the spinal cord (P<0.05 or P<0.01), which were all reversed by a single intrathecal injection of DHC (P<0.05 or P<0.01). The p-NR2B/NR2B ratio in primary spinal neurons were also inhibited after DHC treatment (P<0.05).
CONCLUSION
An intrathecal injection of DHC relieved CCI-induced neuropathic pain in mice by inhibiting the neuroinflammation and neuron hyperactivity.
Animals
;
Neuralgia/etiology*
;
Mice, Inbred C57BL
;
Analgesics/pharmacology*
;
Neuroinflammatory Diseases/pathology*
;
Constriction
;
Male
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Mice, Inbred ICR
;
Microglia/pathology*
;
Spinal Cord/drug effects*
;
Female
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Constriction, Pathologic/complications*
;
Interleukin-6/metabolism*
;
Astrocytes/metabolism*
;
Chronic Disease
;
Neurons/metabolism*
3.Quercetin mitigates HIV-1 gp120-induced rat astrocyte neurotoxicity via promoting G3BP1 disassembly in stress granules.
Pengwei HUANG ; Jie CHEN ; Jinhu ZOU ; Xuefeng GAO ; Hong CAO
Journal of Southern Medical University 2025;45(2):304-312
OBJECTIVES:
To explore the effect of quercetin for mitigating HIV-1 gp120-induced astrocyte neurotoxicity and its underlying mechanism.
METHODS:
Primary rat astrocytes were isolated and treated with quercetin, HIV-1 gp120, or gradient concentrations of quercetin combined with HIV-1 gp120. The formation of stress granules (SGs) in the treated cells was observed with immunofluorescence assay, and the levels of oxidative stress markers and protein expressions were measured using specific assay kits and Western blotting. HIV-1 gp120 transgenic mice were treated with quercetin (50 mg/kg) by gavage for 4 weeks, and the changes in cognitive functions and oxidative stress levels were examined by behavioral assessments, oxidative stress index analysis in serum, and immunohistochemical and Western blotting of the brain tissue.
RESULTS:
In primary rat astrocytes, treatment with quercetin significantly reduced HIV-1 gp120-induced SG formation, increased the levels of antioxidant indexes, decreased the levels of oxidative substances, and up-regulated protein level associated with SG depolymerization. In the transgenic mouse models, quercetin obviously improved the cognitive function of the rats, reduced oxidative stress levels, and promoted the expression of proteins associate with SG depolymerization in the brain tissues.
CONCLUSIONS
Quercetin mitigates HIV-1 gp120-induced astrocyte neurotoxicity and cognitive function impairment by inhibiting oxidative stress, enhancing expressions of SG depolymerization-related proteins, and promoting SG disassembly, suggesting the value of quercetin as a potential therapeutic agent for neuroprotection in HIV-associated neurocognitive disorders.
Animals
;
Quercetin/pharmacology*
;
Astrocytes/metabolism*
;
HIV Envelope Protein gp120
;
Oxidative Stress/drug effects*
;
Rats
;
Stress Granules/drug effects*
;
Mice
;
Mice, Transgenic
;
Rats, Sprague-Dawley
;
Cells, Cultured
4.From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury.
Yimin YUAN ; Hong LIU ; Ziwei DAI ; Cheng HE ; Shangyao QIN ; Zhida SU
Neuroscience Bulletin 2025;41(1):131-154
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Astrocytes/drug effects*
;
Humans
;
Animals
;
Central Nervous System/pathology*
;
Central Nervous System Diseases/physiopathology*
5.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
6.Fibroblast Growth Factor 8 Suppresses Neurotoxic Astrocytes and Alleviates Neuropathic Pain via Spinal FGFR3 Signaling.
Huizhu LIU ; Lanxing YI ; Guiling LI ; Kangli WANG ; Hongsheng WANG ; Yuqiu ZHANG ; Benlong LIU
Neuroscience Bulletin 2025;41(12):2218-2232
Astrocytes in the spinal dorsal horn (SDH) exhibit diverse reactive phenotypes under neuropathic conditions, yet the mechanisms driving this diversity and its implications in chronic pain remain unclear. Here, we report that spared nerve injury (SNI) induces marked upregulation of both complement component 3 (C3⁺, A1-like) and S100 calcium-binding protein A10 (S100A10⁺, A2-like) astrocyte subpopulations in the SDH, with elevated microglial cytokines including interleukin-1α, tumor necrosis factor-α, and complement component 1q. Transcriptomic, immunohistochemical, and Western blot analyses reveal co-activation of multiple reactive astrocyte states over a unidirectional shift toward an A1-like phenotype. Fibroblast growth factor 8 (FGF8), a neuroprotective factor via FGFR3, mitigated microglia-induced C3⁺ astrocyte reactivity in vitro and suppressed spinal C3 expression and mechanical allodynia following intrathecal administration in SNI mice. These findings reveal a microglia-astrocyte signaling axis that promotes A1 reactivity and position FGF8 as a promising therapeutic candidate for neuropathic pain by modulating astrocyte heterogeneity.
Animals
;
Astrocytes/drug effects*
;
Neuralgia/pathology*
;
Receptor, Fibroblast Growth Factor, Type 3/metabolism*
;
Signal Transduction/physiology*
;
Male
;
Mice
;
Microglia/drug effects*
;
Fibroblast Growth Factor 8/pharmacology*
;
Mice, Inbred C57BL
;
Hyperalgesia/drug therapy*
;
Spinal Cord/drug effects*
;
Complement C3/metabolism*
;
Spinal Cord Dorsal Horn/metabolism*
7.Nuclear Factor-κB Signaling Mediates Antimony-induced Astrocyte Activation.
Tao ZHANG ; Yu Dan ZHENG ; Man JIAO ; Ye ZHI ; Shen Ya XU ; Piao Yu ZHU ; Xin Yuan ZHAO ; Qi Yun WU
Biomedical and Environmental Sciences 2021;34(1):29-39
Objective:
Antimony (Sb) has recently been identified as a novel nerve poison, although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. This study aimed to assess the effects of the nuclear factor kappa B (NF-κB) signaling pathway on antimony-induced astrocyte activation.
Methods:
Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of p65. The expression of protein in brain tissue sections was detected by immunohistochemistry. The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription-polymerase chain reaction (RT-PCR).
Results:
Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP), indicating that antimony induced astrocyte activation
Conclusion
Antimony activated astrocytes by activating the NF-κB signaling pathway.
Animals
;
Antimony/toxicity*
;
Astrocytes/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Glial Fibrillary Acidic Protein/metabolism*
;
MAP Kinase Kinase Kinases
;
Male
;
Mice, Inbred ICR
;
NF-kappa B/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Rats
;
Signal Transduction/drug effects*
8.2,3,7,8-Tetrachlorodibenzo-p-dioxin Promotes Proliferation of Astrocyte Cells via the Akt/STAT3/Cyclin D1 Pathway.
Chang Yue WU ; Kai Zhi YIN ; Yan ZHANG ; Man JIAO ; Xin Yuan ZHAO ; Qi Yun WU
Biomedical and Environmental Sciences 2019;32(4):281-290
OBJECTIVE:
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant, is harmful to the nervous system, but its effects on the brain are still unclear. This study aimed to investigate the effects of TCDD on astrocytes proliferation and underlying molecular mechanism.
METHODS:
The cell proliferation was measured by EdU-based proliferation assay and PI staining by flow cytometry. Protein expression levels were detected by Western blotting. Immunofluorescence, cytoplasmic and nuclear fractions separation were used to assess the distribution of signal transducer and activator of transcription 3 (STAT3).
RESULTS:
C6 cells treated with 10 and 50 nmol/L TCDD for 24 h showed significant promotion of the proliferation of. The exposure to TCDD resulted in the upregulation in the expression levels of phosphorylated protein kinase B (p-Akt), phosphorylated STAT3, and cyclin D1 in a dose- and time-dependent manner. The inhibition of Akt expression with LY294002 or STAT3 expression with AG490 abolished the TCDD-induced cyclin D1 upregulation and cell proliferation. Furthermore, LY294002 suppressed the activation of STAT3. Finally, TCDD promoted the translocation of STAT3 from the cytoplasm to the nucleus, and LY294002 treatment blocked this effect.
CONCLUSION
TCDD exposure promotes the proliferation of astrocyte cells via the Akt/STAT3/cyclin D1 pathway, leading to astrogliosis.
Animals
;
Animals, Newborn
;
Astrocytes
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Environmental Pollutants
;
toxicity
;
Neurotoxins
;
toxicity
;
Polychlorinated Dibenzodioxins
;
toxicity
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Rats, Sprague-Dawley
;
STAT3 Transcription Factor
;
metabolism
9.Effect of Gastrodin on Early Brain Injury and Neurological Outcome After Subarachnoid Hemorrhage in Rats.
Xinzhi WANG ; Shuyue LI ; Jinbang MA ; Chuangang WANG ; Anzhong CHEN ; Zhenxue XIN ; Jianjun ZHANG
Neuroscience Bulletin 2019;35(3):461-470
Gastrodin is a phenolic glycoside that has been demonstrated to provide neuroprotection in preclinical models of central nervous system disease, but its effect in subarachnoid hemorrhage (SAH) remains unclear. In this study, we showed that intraperitoneal administration of gastrodin (100 mg/kg per day) significantly attenuated the SAH-induced neurological deficit, brain edema, and increased blood-brain barrier permeability in rats. Meanwhile, gastrodin treatment significantly reduced the SAH-induced elevation of glutamate concentration in the cerebrospinal fluid and the intracellular Ca overload. Moreover, gastrodin suppressed the SAH-induced microglial activation, astrocyte activation, and neuronal apoptosis. Mechanistically, gastrodin significantly reduced the oxidative stress and inflammatory response, up-regulated the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, phospho-Akt and B-cell lymphoma 2, and down-regulated the expression of BCL2-associated X protein and cleaved caspase-3. Our results suggested that the administration of gastrodin provides neuroprotection against early brain injury after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Astrocytes
;
drug effects
;
metabolism
;
Benzyl Alcohols
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
metabolism
;
Brain
;
drug effects
;
metabolism
;
Brain Edema
;
etiology
;
prevention & control
;
Calcium
;
metabolism
;
Glucosides
;
administration & dosage
;
Glutamic Acid
;
metabolism
;
Male
;
Microglia
;
drug effects
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
administration & dosage
;
Oxidative Stress
;
drug effects
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
metabolism
;
prevention & control
10.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization

Result Analysis
Print
Save
E-mail