1.Research progress on calcium activities in astrocyte microdomains.
Fu-Sheng DING ; Si-Si YANG ; Liang ZHENG ; Dan MU ; Zhu HUANG ; Jian-Xiong ZHANG
Acta Physiologica Sinica 2025;77(3):534-544
Astrocytes are a crucial type of glial cells in the central nervous system, not only maintaining brain homeostasis, but also actively participating in the transmission of information within the brain. Astrocytes have a complex structure that includes the soma, various levels of processes, and end-feet. With the advancement of genetically encoded calcium indicators and imaging technologies, researchers have discovered numerous localized and small calcium activities in the fine processes and end-feet. These calcium activities were termed as microdomain calcium activities, which significantly differ from the calcium activities in the soma and can influence the activity of local neurons, synapses, and blood vessels. This article elaborates the detection and analysis, characteristics, sources, and functions of microdomain calcium activities, and discusses the impact of aging and neurodegenerative diseases on these activities, aiming to enhance the understanding of the role of astrocytes in the brain and to provide new insights for the treatment of brain disorders.
Astrocytes/cytology*
;
Humans
;
Animals
;
Calcium/metabolism*
;
Calcium Signaling/physiology*
;
Brain/physiology*
;
Aging/physiology*
;
Membrane Microdomains/physiology*
;
Neurodegenerative Diseases/physiopathology*
2.Progress in investigating astrocyte heterogeneity after spinal cord injury based on single-cell sequencing technology.
Lei DU ; Yan-Jun ZHANG ; Tie-Feng GUO ; Lin-Zhao LUO ; Ping-Yi MA ; Jia-Ming LI ; Sheng TAN
China Journal of Orthopaedics and Traumatology 2025;38(5):544-548
In recent years, the study of single-cell transcriptome sequencing technology in the heterogeneity of astrocytes (astrocytes) after spinal cord injury (SCI) has provided new perspectives on post-traumatic nerve regeneration and repair. To provide a review on the research progress of single-cell sequencing technology in astrocytes after spinal cord injury (SCI), and to more comprehensively and deeply elaborate the application of single-cell sequencing technology in the field of astrocytes after SCI. Single-cell sequencing technology can analyse the transcriptomes of individual cells in a high-throughput manner, thus revealing fine differences in cell types and states. By using single-cell sequencing technology, the heterogeneity of astrocytes after SCI and their association with nerve regeneration and repair were revealed. In conclusion, the application of single-cell sequencing technology provides an important tool to reveal the heterogeneity of astrocytes after SCI, to further explore the mechanisms of astrocytes in SCI, and to develop intervention strategies targeting their regulatory mechanisms in order to improve the therapeutic efficacy of SCI. The discovery of changes in astrocyte transcriptome dynamics has improved researchers' understanding of spinal cord injury lesion progression and provided new insights into the treatment of spinal cord injury at different time points. To date, all of these findings need to be validated by more basic research and sufficient clinical trials. In the future, single-cell sequencing technology, through interdisciplinary collaboration with bioinformatics, computer science, tissue engineering, and clinical medicine, is expected to open a new window for the treatment of spinal cord injury.
Spinal Cord Injuries/metabolism*
;
Astrocytes/cytology*
;
Single-Cell Analysis/methods*
;
Humans
;
Animals
;
Transcriptome
;
Nerve Regeneration
3.Mechanisms of spinal microglia and astrocytes in exercise-induced analgesia.
Shuang HU ; Haojun YOU ; Jing LEI
Journal of Central South University(Medical Sciences) 2025;50(8):1455-1464
Exercise-induced analgesia (EIA) refers to the elevation of pain thresholds and reduction in sensitivity to noxious stimuli achieved through exercise training. As a non-pharmacological treatment strategy, exercise therapy has demonstrated positive effects on both acute and chronic pain. Increasing evidence indicates that modulation of glial cell activity is an important mechanism underlying analgesia. Spinal glial cells contribute to the development and maintenance of pathological pain by promoting pain signal transmission through inflammatory responses and synaptic remodeling. Exercise can differentially regulate microglia and astrocyte activity, inhibiting multiple inflammatory signaling pathways, such as P2X4/P2X7 purinergic receptors, brain-derived neurotrophic factor (BDNF)/phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR), interleukin (IL)-6/Janus kinase (JAK) 2/signal transducer and activator of transcription 3 (STAT3), p38-mitogen-activated protein kinases (MAPK), and Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), thereby reducing the release of pro-inflammatory cytokines, decreasing inflammatory and nociceptive hypersensitivity, and alleviating pathological pain. This review also summarized the effects of different exercise intensities, durations, and frequencies on glial cell responses in order to provide a theoretical foundation for optimizing exercise-based interventions for pathological pain conditions.
Humans
;
Microglia/metabolism*
;
Astrocytes/metabolism*
;
Exercise/physiology*
;
Signal Transduction
;
Analgesia/methods*
;
Spinal Cord/cytology*
;
Exercise Therapy
;
Pain Management/methods*
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
4.Comparison of Two Cultured Astrocytes.
Acta Academiae Medicinae Sinicae 2019;41(4):524-528
To compare the biological functions of astrocytes cultured by two methods. Methods The primary astrocytes were cultured from rodent neonatal brain,whereas the differentiated astrocytes were prepared by differentiating neural stem cells with fetal bovine serum.The morphologies of these two different types of astrocytes were observed under microscope and the expression of glial fibrillary acidic protein(GFAP),an astrocyte-specific marker,was detected by immunofluorescence staining after treatment with 10 cytokines.Changes in GFAP,glutamate synthetase(GS),glutamate-aspartic acid transporter(xCT),neuregulin-1(NRG),N-methyl-D-aspartic acid receptor(NMDA),lipoprotein lipase(LPL)were detected and compared. Results The morphologies and GFAP expression differed between these two astrocyte types.Microarray showed that the expressions of GFAP,GS,xCT,NRG,NMDA,and LPL were significantly higher in primary astrocytes than in differentiated astrocytes.None of these 10 cytokines increased the expression of GFAP in primary astrocytes,whereas treatment with transforming growth factor-β(TGF-β)significantly increased the expression of GFAP in the differentiated astrocytes. Conclusion Compared with the differentiated astrocytes,the primary astrocytes are more similar to reactive astrocytes,and TGF-β can promote the transition of differentiated cells to reactive cells.
Animals
;
Animals, Newborn
;
Astrocytes
;
cytology
;
Cell Differentiation
;
Cells, Cultured
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Neural Stem Cells
;
cytology
;
Rodentia
;
Transforming Growth Factor beta
;
pharmacology
5.Altered expressions of SphK1 and S1PR2 in hippocampus of epileptic rats.
Yuan-Yuan DONG ; Lin WANG ; Xu CHU ; Shuai CUI ; Qing-Xia KONG
Chinese Journal of Applied Physiology 2019;35(4):308-311
OBJECTIVE:
To observe the expressions of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 2 (S1PR2) in hippocampus of epileptic rats and to investigate the pathogenesis of SphK1 and S1PR2 in epilepsy.
METHODS:
One hundred and eight male Sprague-Dawley (SD) rats were randomly divided into control group (n=48) and pilocarpine (PILO) group (n=60). A robust convulsive status epilepticus (SE) was induced in PILO group rats by the application of pilocarpine. Control group rats were injected with respective of physiological saline. Pilocarpine group was randomly divided into 6 subgroups (n=8): acute group (E6 h, E1 d, E3 d), latent group (E7 d) and chronic group (E30 d, E56 d). Each subgroup has 8 control rats and 8 epileptic rats. Hippocampal tissue and brain slices were obtained from control rats and rats subjected to the Li-PILO model of epilepsy at 6 h, 1 d, 3 d,7 d,30 d and 56 d after status epilepticus (SE). Western blot technique was used to determine the expressions of SphK1 and S1PR2 in hippocampus at different point of time after pilocarpine treatment. Immunofluorescence was applied to detect the activation and proliferation of hippocampal astrocytes and the localization of SphK1 and S1PR2 in rat hippocampal astrocytes.
RESULTS:
Compared with control group, the levels of SphK1 in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d) were significantly increased while the expressions of S1PR2 were decreased in acute phase (E3 d), latent phase (E7 d) and chronic phase (E30 d, E56 d)(P<0.05 or P<0.01). Immunofluorescence results showed astrocyte activation and proliferation in hippocampus of epileptic (E7 d) rats (P<0.05). Confocal microscopy confirmed the preferential expressions of SphK1 and S1PR2 in epileptic rat(E7 d)hippocampal astrocytes.
CONCLUSION
The results indicate that SphK1 and S1PR2 may play an important role in the pathogenesis of epilepsy by regulating the activation and proliferation of hippocampal astrocytes and altering neuronal excitability.
Animals
;
Astrocytes
;
enzymology
;
Epilepsy
;
enzymology
;
physiopathology
;
Hippocampus
;
cytology
;
enzymology
;
Male
;
Phosphotransferases (Alcohol Group Acceptor)
;
metabolism
;
Pilocarpine
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Lysosphingolipid
;
metabolism
6.Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2018;9(3):298-309
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Blood-Brain Barrier
;
cytology
;
metabolism
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
genetics
;
metabolism
;
Female
;
Glycosylation
;
Male
;
Mice
;
Proteoglycans
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
7.Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations.
Zhanping SHI ; Yanan GENG ; Jiping LIU ; Huina ZHANG ; Liqiang ZHOU ; Quan LIN ; Juehua YU ; Kunshan ZHANG ; Jie LIU ; Xinpei GAO ; Chunxue ZHANG ; Yinan YAO ; Chong ZHANG ; Yi E SUN
Protein & Cell 2018;9(4):351-364
Aging associated cognitive decline has been linked to dampened neural stem/progenitor cells (NSC/NPCs) activities manifested by decreased proliferation, reduced propensity to produce neurons, and increased differentiation into astrocytes. While gene transcription changes objectively reveal molecular alterations of cells undergoing various biological processes, the search for molecular mechanisms underlying aging of NSC/NPCs has been confronted by the enormous heterogeneity in cellular compositions of the brain and the complex cellular microenvironment where NSC/NPCs reside. Moreover, brain NSC/NPCs themselves are not a homogenous population, making it even more difficult to uncover NSC/NPC sub-type specific aging mechanisms. Here, using both population-based and single cell transcriptome analyses of young and aged mouse forebrain ependymal and subependymal regions and comprehensive "big-data" processing, we report that NSC/NPCs reside in a rather inflammatory environment in aged brain, which likely contributes to the differentiation bias towards astrocytes versus neurons. Moreover, single cell transcriptome analyses revealed that different aged NSC/NPC subpopulations, while all have reduced cell proliferation, use different gene transcription programs to regulate age-dependent decline in cell cycle. Interestingly, changes in cell proliferation capacity are not influenced by inflammatory cytokines, but likely result from cell intrinsic mechanisms. The Erk/Mapk pathway appears to be critically involved in regulating age-dependent changes in the capacity for NSC/NPCs to undergo clonal expansion. Together this study is the first example of using population and single cell based transcriptome analyses to unveil the molecular interplay between different NSC/NPCs and their microenvironment in the context of the aging brain.
Aging
;
genetics
;
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Brain
;
cytology
;
metabolism
;
Cell Differentiation
;
genetics
;
Cell Division
;
genetics
;
Cell Proliferation
;
genetics
;
Gene Expression Regulation
;
genetics
;
Mice
;
Neural Stem Cells
;
metabolism
;
Single-Cell Analysis
;
Stem Cells
;
cytology
;
metabolism
;
Transcriptome
;
genetics
8.GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice.
Zhibao GUO ; Yingying SU ; Huifang LOU
Neuroscience Bulletin 2018;34(5):769-778
Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP cells mainly generated NeuN neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP cells at the young adult stage is significantly different from that at the adult stage.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Brain
;
cytology
;
growth & development
;
metabolism
;
Calbindins
;
metabolism
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Mice
;
Mice, Transgenic
;
Nerve Tissue Proteins
;
metabolism
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Nuclear Proteins
;
metabolism
9.Effects of angiotensin-(1-7) on hippocampal expressions of GFAP and GDNF and cognitive function in rats with diabetes mellitus.
Dongling ZHANG ; Qian XIAO ; Huiqiong LUO ; Kexiang ZHAO
Journal of Southern Medical University 2015;35(5):646-651
OBJECTIVETo explore the effects of angiotensin-(1-7) on the learning and memory abilities and the expressions of glial fibrillary acidic protein (GFAP) and glial cell line-derived neurotrophic factor (GDNF) in the hippocampus of diabetic rats.
METHODSForty male SD rats were randomly assigned into 4 groups, namely the control group, diabetic group, Ang(1-7)-treated diabetic group (DM1 group), and Ang-(1-7)- and Mas receptor antagonist A779-treated diabetic group (DM2 group). Diabetic rat models were established by a single intraperitoneal injection of streptozotocin (60 mg/kg). The cognitive function of the rats was assessed with Morris water maze (MWM) test. The expressions of GDNF in the hippocampus were examined by RT-PCR and Western blot. Nissl staining was performed to evaluate the morphological changes in rat hippocampus. The expressions of glial fibrillary acidic protein (GFAP, a key indicator of astrocytic reactivity) and caspase-3 were measured by immunohistochemistry.
RESULTSCompared with the control group, the diabetic rats exhibited significantly impaired learning and memory abilities (P<0.05) with lowered expression of GDNF and increased caspase-3 expression in the hippocampus (P<0.05) and significant hippocampal neuronal and astrocyte injuries (P<0.05). Treatment with Ang(1-7) obviously improved the learning and memory abilities of the diabetic rats (P<0.05), increased GDNF and GFAP expressions (P<0.05), lowered caspase-3 expression (P<0.05), and increased the number of surviving neurons in the hippocampus (P<0.05). Such effects of Ang(1-7) effect was blocked by treatment with A779 of the diabetic rats.
CONCLUSIONAng(1-7) can alleviate cognitive dysfunction in diabetic rats possibly by up-regulating the expressions of GFAP and GDNF and promoting neuron survival in the hippocampus.
Angiotensin I ; pharmacology ; Animals ; Astrocytes ; Caspase 3 ; metabolism ; Cognition ; Cognition Disorders ; Diabetes Mellitus, Experimental ; physiopathology ; Glial Cell Line-Derived Neurotrophic Factor ; metabolism ; Glial Fibrillary Acidic Protein ; metabolism ; Hippocampus ; cytology ; metabolism ; Male ; Memory ; Neurons ; Peptide Fragments ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Streptozocin
10.Optimization of trypsin digestion intensity to obtain high-purity in vitro cultured astrocytes.
Hui JIN ; Peng-Bo YANG ; Gai-Feng FENG ; Ning JIA ; Wei-Na YANG ; Wei-Xi WANG
Acta Physiologica Sinica 2015;67(1):103-109
The aim of the present study was to observe the effect of trypsin digestion on the purity of in vitro cultured astrocytes and optimize the culture methods. The cerebral cortical tissue from newborn Sprague Dawley (SD) rats was isolated and digested with 0.25% trypsin for 20, 30, or 40 min. The obtained single cell suspension was then cultured. Once reaching confluence, the cells were shaken at a constant temperature. Then, each of 20 and 30 min groups was subdivided into two groups, the control group with normal digestion and two-time-digestion group, and the cells were passaged and purified. Through inverted phase contrast microscope and MTT assay, cell growth and proliferation were observed, respectively. Immunofluorescence for glial fibrillary acidic protein (GFAP) was used to observe the morphology of astrocytes and to assess their purity in different stages. Flow cytometric analysis was used to detect the apoptotic rates of purified astrocytes. The results showed that, the cells being digested for 20 min usually reached confluence at 9 d after seeding. When the digestion time was extended to 30 min, the cells grew faster and reached confluence at 7 d after seeding, meanwhile the morphology of astrocytes was normal, GFAP positive rate (70.2 ± 4.0)% being much higher than that of the 20 min group (P < 0.05). Compared with 20 min group, 40 min group showed higher GFAP positive rate, whereas the cell proliferation was slower, and cell injury was more obvious. After shaking at constant temperature, two times of trypsin digestion could decrease the number of contaminated cells after passage. The GFAP positive rates of two-time-digestion groups in passage 1 (P1) were higher than those of corresponding control groups, and the GFAP positive rate of 30 min + two-time-digestion group in P1 reached (98.1 ± 1.7)%, which was equivalent to that of the 20 min + control group in P3. However, the apoptotic rate showed no significant difference between these two groups. Based on above mentioned results, we conclude that 30 min + two-time of trypsin digestion effectively improves the purity of astrocytes and shortens the time of primary culture and purification, suggesting that it is a rapid and effective method to obtain astrocytes with high purity in vitro.
Animals
;
Astrocytes
;
cytology
;
Cell Culture Techniques
;
Cell Proliferation
;
Cell Separation
;
methods
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Trypsin

Result Analysis
Print
Save
E-mail