1.Effect of montelukast sodium intervention on airway remodeling and percentage of Th17 cells/CD4+CD25+ regulatory T cells in asthmatic mice.
Li LI ; Chun-Yan LOU ; Min LI ; Jian-Bo ZHANG ; Jie CHEN
Chinese Journal of Contemporary Pediatrics 2016;18(11):1174-1180
OBJECTIVETo study the dynamic changes in the percentage of Th17 cells/CD4CD25regulatory T cells after intervention with montelukast sodium, a leukotriene receptor antagonist, in asthmatic mice and the association between them.
METHODSBalb/c mice were randomly divided into blank group, asthma group, and montelukast sodium group. The asthmatic mouse model of airway remodeling was established by sensitization with intraperitoneal injection of chicken ovalbumin (OVA) and aluminum hydroxide suspension and aerosol inhalation of OVA. The mice in the blank group were given normal saline, and those in the montelukast sodium group were given montelukast sodium by gavage before aerosol inhalation. Eight mice were randomly sacrificed within 24 hours after 2, 4, and 8 weeks of aerosol inhalation. The pathological sections of lung tissue were used to observe the degree of airway remodeling. Flow cytometry was used to measure the percentages of Th17 cells and CD4CD25regulatory T cells in CD4T cells.
RESULTSThe asthma group and the montelukast sodium group had significantly higher bronchial wall thickness and smooth muscle thickness at all time points compared with the blank group (P<0.05). At 8 weeks of intervention, the montelukast sodium group had significantly greater improvements in the above changes compared with the asthma group (P<0.05). Compared with the blank group, the asthma group and the montelukast sodium group had significant increases in Th17 cells (positively correlated with airway remodeling) and significant reductions in CD4CD25regulatory T cells (negatively correlated to airway remodeling) at all time points (P<0.05). At 8 weeks of intervention, the montelukast sodium group had a significant reduction in the number of Th17 cells and a significant increase in the number of CD4CD25regulatory T cells compared with the asthma group (P<0.05).
CONCLUSIONSMontelukast sodium intervention can alleviate airway remodeling and achieve better improvements over the time of intervention. The possible mechanism may be related to the improvement of immunologic derangement of CD4CD25regulatory T cells and inhibition of airway inflammation.
Acetates ; pharmacology ; Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; immunology ; Female ; Lung ; pathology ; Mice ; Mice, Inbred BALB C ; Quinolines ; pharmacology ; T-Lymphocytes, Regulatory ; immunology ; Th17 Cells ; immunology
2.Effects of suplatast tosilate on airway inflammation and interleukin-5 in asthmatic rats.
Dan LIU ; Yun LI ; Li-Li ZHONG ; Yu-Pin TAN
Chinese Journal of Contemporary Pediatrics 2014;16(7):759-763
OBJECTIVETo study the effects of suplatast tosilate (IPD) on the airway inflammation and expression of interleukin-5 in asthmatic rats.
METHODSFifty adult male Sprague-Dawley rats (4-week- old) were randomly assigned to five groups: placebo control, untreated asthma, budesonide(BUD)-treated asthma , early or late IPD intervention group (n=10 rats each). Asthmatic mode was prepared by ovalbumin sensitizion and challenge. Inflammatory cells and the percentage of EOS were detected in bronchoalveolar lavage fluid (BALF). The lung tissues were removed to detect the lung histomorphology. Gene expression of IL-5 was measured by reverse transcription-polymerase chain reaction (RT-PCR). Levels of interleukin 5 (IL-5) in BALF were measured using ELISA.
RESULTSThe inflammatory cells and the percentage of EOS in BALF, IL-5 levels in BALF and IL-5 mRNA expression in the lung tissues were obviously higher in the untreated asthma group than the control group (P<0.05), while the parameters in the IPD or BUD-treated asthma groups were significantly lower than the untreated asthma group (P<0.05).
CONCLUSIONSIPD treatment can alleviate airway inflammation in asthmatic rats, possibly through inhibiting IL-5 mRNA transcripts.
Animals ; Arylsulfonates ; therapeutic use ; Asthma ; drug therapy ; immunology ; pathology ; Eosinophils ; drug effects ; Interleukin-5 ; analysis ; antagonists & inhibitors ; genetics ; Lung ; metabolism ; pathology ; Male ; Rats ; Rats, Sprague-Dawley ; Sulfonium Compounds ; therapeutic use
3.Effect of dexamethasone on osteopontin expression in the lung tissue of asthmatic mice.
Hai-Hui SUN ; Yun-Xiao SHANG ; Nan YANG
Chinese Journal of Contemporary Pediatrics 2014;16(12):1265-1270
OBJECTIVETo study the correlation between airway inflammation and osteopontin (OPN) level in the lung tissue, and to study the effect of dexamethasone (DXM) on OPN expression.
METHODSFifty mice were randomly divided into 5 groups: normal control, ovalbumin (OVA)-challenged asthma groups (OVA inhalation for 1 week or 2 weeks) and DXM-treated asthma groups (DXM treatment for 1 week or 2 weeks). The mice were sensitized and challenged with OVA to prepare mouse model of acute asthma. Alterations of airway inflammation were observed by haematoxylin-eosin staining. Serum level of OVA-sIgE was evaluated using ELISA. OPN expression in the lung tissue was located and measured by immunohistochemistry and Western blot respectively. OPN mRNA level in the lung tissue was detected by real-time PCR.
RESULTSThe asthma groups showed more pathological changes in the airway than the normal control and the DXM-treated groups. Compared with the OVA-challenged 1 week group, the pathological alterations increased in the OVA-challenged 2 weeks group. The level of OVA-sIgE in serum increased in the asthma groups compared with the control and the DXM groups (P<0.01). Serum OVA-sIgE sevel increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01). OPN protein and mRNA levels were significantly raised in the asthma groups compared with the normal control and the DXM groups (P<0.01), and both levels increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01).
CONCLUSIONSThe increased OPN expression in the lung tissue is associated with more severe airway inflammation in asthmatic mice, suggesting that OPN may play an important role in the pathogenesis of asthma. DXM can alleviate airway inflammation possibly by inhibiting OPN production.
Animals ; Asthma ; drug therapy ; metabolism ; pathology ; Dexamethasone ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Immunoglobulin E ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; Osteopontin ; analysis ; genetics ; physiology ; Ovalbumin ; immunology
4.The effect of Qi'ao Decoction on ovalbumin induced and lipopolysaccharide enhanced severe asthma mice and its mechanism.
Chen-Xue JIANG ; Xin-Sheng FAN ; Peng-Cheng GU ; Hui-Qin XU
Chinese Journal of Natural Medicines (English Ed.) 2013;11(6):638-644
AIM:
To evaluate the effect of Qi'ao Deocoction (QAD) on the inflammation and hyperresponsiveness of asthma mice.
METHODS:
120 Balb/C mice were randomly divided into six groups: normal group, model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group. The asthma model was reproduced in Balb/C mice sensitized by ovalbumin, challenged by OVA and LPS. The mice of the normal group were sensitized, challenged and intranasally instilled by PBS. On day 28-34, 6.7, 13.4 and 26.8 g · kg(-1) Qi'ao Decoction were administrated; 0.002 4 g · kg(-1) dexamethasone solution was given to the dexamethasone group; normal and model groups were given the same amount of normal saline. Bronchoalveolar lavage fluid, airway hyperresponsiveness, lung histopathology and cytokines were then collected and analyzed.
RESULTS:
Compared with normal group, total cellular score, the number of macrophages, lymphocytes, eosinophils and neutrophils of model group significantly increased (P < 0.01). Compared with model group, the administration of dexamethasone induced a significant decrease in eosinophils and neutrophils (P < 0.05, P < 0.01). The number of eosinophils, which plays an important role in airway inflammatory reaction of asthma, of the three QAD groups all decreased (P < 0.01). RL before and after Ach (5 mg · mL(-1)) stimulation in the model group both overtook that in the normal group (P < 0.01). Compared with model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group groups all had significantly lower RL before and after Ach stimulation (P < 0.01). Normal pulmonary histopathology was found in the normal group. In the model group, mice exhibited marked increases in inflammatory cell infiltration, mostly including neutrophils and macrophages, perivascular inflammation and thickened alveolus wall (P < 0.01). Dexamethasone application mitigated inflammation around the bronchi (P < 0.05). These histopathological changes were ameliorated in the three decoction groups (P < 0.01, P < 0.05). In addition, alveolus and airway wall lesions of medium dose QAD group and high dose QAD group were reduced, the number of inflammatory cells infiltrated around the walls decreased, no clear degeneration of bronchial epithelial cells was found, and exudates in bronchi declined in different degrees. Compared with normal group, IFN-γ and IL-12 of model group significantly decreased, while IL-4 increased, showing statistic difference (P < 0.05). Compared with model group, IFN-γ and IL-12 level of dexamethasone group went up too, but IL-4 declined (P < 0.05). The level of IFN-γ of medium dose QAD group and high dose QAD group both increased; IL-4 and IL-12 of medium dose group were found significant differences (P < 0.05); but none of the cytokines of low dose QAD group showed statistical significance (P > 0.05).
CONCLUSION
QAD can significantly inhibit airway inflammation and airway hyperresponsiveness of mice with severe asthma induced by ovalumin and lipopolysaccharide, adjust the balance of cytokines, and improve lung histopathological condition. So, it exhibits great effect on severe asthma.
Animals
;
Asthma
;
chemically induced
;
drug therapy
;
immunology
;
pathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Female
;
Humans
;
Interleukin-12
;
immunology
;
Interleukin-4
;
immunology
;
Lipopolysaccharides
;
adverse effects
;
immunology
;
Lung
;
immunology
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin
;
adverse effects
;
immunology
5.Expression of Galectin-9 and Tim-3 in lungs of mice with asthma.
Zhi-Ying ZHANG ; Bin LUAN ; Xiao-Xia FENG
Chinese Journal of Contemporary Pediatrics 2011;13(5):406-410
OBJECTIVETo study the expression of Galectin-9 and Tim-3 in lungs of mice with asthma and the effect of rosiglitazone (PPAR-γ agonist) on their expression.
METHODSFortyfive BALB/c SPF female mice were randomized into control group and asthma groups with and without rosiglitazone intervention. After ovalbumin stimulation and rosiglitazone intervention the pathological changes of the lung tissues were observed. Galectin-9 and Tim-3 mRNA levels in lung tissues were determined using RT-PCR. The levels of IL-4 and IFN-γ in peripheral blood were measured using ELISA.
RESULTSThe expression of Galectin-9 and Tim-3 mRNA of lung tissues in the untreated asthma group increased significantly compared with the control and the rosiglitazone treated groups (P<0.05). A significantly increased blood expression of IL-4 and a significantly decreased blood expression of IFN-γ were found in the untreated asthma group compared with the control and the rosiglitazone-treated groups (P<0.05). The expression of Galectin-9 and Tim-3 mRNA was positively correlated with blood IL-4 level (r=0.792, r=0.794 respectively; P<0.05), but negatively correlated with blood IFN-γ level (r=-0.692, r=-0.757 respectively; P<0.05).
CONCLUSIONSGalectin-9 and Tim-3 mRNA levels in lungs increase in mice with asthma and significantly correlate with the levels of blood Th1/Th2 cytokines. This suggests that Galectin-9 and Tim-3 are closely related to inflammatory process in asthma. Rosiglitazone treatment may decrease the expression of Galectin-9 and Tim-3.
Animals ; Asthma ; drug therapy ; immunology ; pathology ; Female ; Galectins ; genetics ; Hepatitis A Virus Cellular Receptor 2 ; Interferon-gamma ; blood ; Interleukin-4 ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; PPAR gamma ; physiology ; RNA, Messenger ; analysis ; Receptors, Virus ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Th1 Cells ; immunology ; Th2 Cells ; immunology ; Thiazolidinediones ; therapeutic use
6.Preventive effect of IL-18 gene modified mature dendritic cells vaccine on airway inflammation in mouse asthma model.
Hang YUAN ; Jian-Hua LIU ; Cheng WANG ; He-Quan LI ; Hua-Ying WANG ; Yun ZHENG ; Da-Jing XIA
Journal of Zhejiang University. Medical sciences 2011;40(2):176-183
OBJECTIVETo investigate the preventive effect of interleukin-18 (IL-18) gene modified mature dendritic cells (mDC) vaccine on airway inflammation in mouse asthma model.
METHODSThe asthma model was induced by injection of ovalbumin (OVA) in BALB/c mice. IL-18 gene modified mouse mature dendritic cells (mDC) were detected by flow cytometry and its capacity of inducing allogeneic T cell responses was examined by mixed lymphocyte reaction (MLR). The OVA-induced asthmatic mice were randomly divided into 6 groups: PBS group, DXM group, mDC group, Ad-LacZ-mDC group, Ad-IL-18-mDC group and control group. The pathological changes in lung tissues were assayed by HE and AB-PAS staining. The numbers of inflammatory cells and percentage of eosinophils (EOS) in bronchoalveolar lavage fluid (BALF) were counted. The levels of IFN-γ IL-4 and IL-13 in culture supernatant of splenocytes were measured by ELISA method. The percentage of CD4(+)CD25(+)Foxp3(+) Treg was assessed by flow cytometry analysis.
RESULTThe vaccine was effective in decreasing the infiltration of EOS and accumulation of airway goblet cells in lung tissues, the numbers of inflammatory cells and percentage of EOS in BALF, and the levels of IL-4 and IL-13 in culture supernatant of splenocytes, and in increasing the levels of IFN-γ in culture supernatant of splenocytes and the percentage of CD4(+)CD25(+)foxP3(+) reg.
CONCLUSIONIL-18 gene modified mDC vaccine has a preventive effect on airway inflammation in OVA-induced asthmatic mice.
Animals ; Asthma ; immunology ; pathology ; prevention & control ; Dendritic Cells ; immunology ; Disease Models, Animal ; Genetic Therapy ; Interleukin-18 ; genetics ; Lung ; pathology ; Male ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology
7.Recent Advances in Mechanisms and Treatments of Airway Remodeling in Asthma: A Message from the Bench Side to the Clinic.
The Korean Journal of Internal Medicine 2011;26(4):367-383
Airway remodeling in asthma is a result of persistent inflammation and epithelial damage in response to repetitive injury. Recent studies have identified several important mediators associated with airway remodeling in asthma, including transforming growth factor-beta, interleukin (IL)-5, basic fibroblast growth factor, vascular endothelial growth factor, LIGHT, tumor necrosis factor (TNF)-alpha, thymic stromal lymphopoietin, IL-33, and IL-25. In addition, the epithelium mesenchymal transformation (EMT) induced by environmental factors may play an important role in initiating this process. Diagnostic methods using sputum and blood biomarkers as well as radiological interventions have been developed to distinguish between asthma sub-phenotypes. Human clinical trials have been conducted to evaluate biological therapies that target individual inflammatory cells or mediators including anti IgE, anti IL-5, and anti TNF-alpha. Furthermore, new drugs such as c-kit/platelet-derived growth factor receptor kinase inhibitors, endothelin-1 receptor antagonists, calcium channel inhibitors, and HMG-CoA reductase inhibitors have been developed to treat asthma-related symptoms. In addition to targeting specific inflammatory cells or mediators, preventing the initiation of EMT may be important for targeted treatment. Interestingly, bronchial thermoplasty reduces smooth muscle mass in patients with severe asthma and improves asthma-specific quality of life, particularly by reducing severe exacerbation and healthcare use. A wide range of different therapeutic approaches has been developed to address the immunological processes of asthma and to treat this complex chronic illness. An important future direction may be to investigate the role of mediators involved in the development of airway remodeling to enhance asthma therapy.
Airway Resistance/*immunology
;
Asthma/immunology/*pathology/therapy
;
Biological Therapy
;
Cytokines
;
Eosinophils
;
Epithelium
;
Humans
;
Inflammation/immunology/*pathology/therapy
;
Interleukin-5
;
Tumor Necrosis Factor-alpha
8.Protective effects and mechanism of Inonotus obliquus on asthmatic mice.
Guanghai YAN ; Guangyu JIN ; Liangchang LI ; Xiangzheng QIN ; Changji ZHENG ; Guangzhao LI
China Journal of Chinese Materia Medica 2011;36(8):1067-1070
OBJECTIVETo explore the protective effects and mechanism of ethanol extract of Inonotus obliquus (EEIO) injection on asthmatic mice.
METHODOVA was injected intraperitoneally and inhaled to produce the asthmatic model. Thirty two mice were randomly divided into four groups: control group, asthma group and I. obliquus groups of high and low dose. The concentrations of IL-4, IL-5, IL-13 and IFN-gamma in BALF, the phosphor-p38 MAPK in lung tissues were respectively measured by ELISA and Western blotting. The number of inflammatory cells in BALF and histopathology changes were observed.
RESULTIn asthmatic group, the number of inflammatory cells and the concentrations of IL-4, IL-5, IL-13 in BALF and phospho-p38 MAPK in lung tissue were higher, while IFN-gamma were lower than those in normal control mice (P < 0.05). In I. obliquus group, the number of inflammatory cells, the concentrations of IL-4, IL-5, IL-13 in BALF and phosphor-p38 MAPK in lung tissue were lower, but were higher than those in normal control mice (P < 0.05), and histropathology damage was alleviated significantly. There was no significant difference observed among the efficacies in the I. obliquus groups of high and low dose.
CONCLUSIONp38 MAPK may play a role in pathological process of asthma. I. obliquus effectively treats asthma by inhibiting the expression of phosphor-p38 MAPK, correcting the unbalance of IFN-gamma/IL-4 and decreasing the number of inflammatory cells.
Animals ; Anti-Asthmatic Agents ; isolation & purification ; pharmacology ; Asthma ; drug therapy ; metabolism ; pathology ; Basidiomycota ; chemistry ; Basophils ; drug effects ; metabolism ; Bronchoalveolar Lavage Fluid ; cytology ; immunology ; Disease Models, Animal ; Interferon-gamma ; drug effects ; metabolism ; Interleukin-13 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-5 ; metabolism ; Lung ; pathology ; Lymphocytes ; drug effects ; metabolism ; Mice ; Mice, Inbred BALB C ; Neutrophils ; drug effects ; metabolism ; Phytotherapy ; Plant Extracts ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; drug effects ; metabolism
9.1,25-dihydroxyvitamin D₃ pretreatment enhances the efficacy of allergen immunotherapy in a mouse allergic asthma model.
Jian-Xin MA ; Jun-Bo XIA ; Xiao-Ming CHENG ; Chang-Zheng WANG
Chinese Medical Journal 2010;123(24):3591-3596
BACKGROUNDAllergen-specific immunotherapy can induce immune tolerance to specific allergens by regulating immune status of individuals. However, its clinical application is limited due to individual differences in efficacy among patients and un-confirmed safety. 1,25 Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) has been shown to be involved in a variety of physiological processes, including immune response regulation. In the present study we explored the role of 1,25(OH)(2)D(3) pretreatment for immunotherapy.
METHODSSeventy-five BALB/c mice were randomly divided into five groups (15 mice per group). The mouse allergic asthma model was established by intra-peritoneal injection of ovalbumin (OVA, 10 µg) and aluminium hydroxide (2 mg) as an adjuvant. Intra-peritoneal injection of 50 ng of 1,25(OH)(2)D(3) served as a pretreatment, subcutaneous injection of OVA (100 µg) as an immunotherapy, and 1% OVA inhalation as a challenge. Histopathological analysis was performed on four mice per group. The number of cells and their classification in bronchoalvolar lavage (BAL) fluid were assayed. Levels of serum OVA-specific immunoglobulin E (sIgE) and IFN-γ, IL-4, IL-5 and IL-10 in BAL fluid were measured by ELISA.
RESULTSAfter 1,25(OH)(2)D(3) pretreatment, immunotherapy could significantly inhibit the infiltration of inflammatory cells into lung tissues and BAL fluid of mice with allergic asthma when compared with un-treated animals (eosinophils: (7.46 ± 1.34) × 10(4)/ml vs. (13.41 ± 1.67) × 10(4)/ml, P < 0.05). In addition, levels of IL-4 ((36.91 ± 7.87) pg/ml vs. (43.70 ± 6.42) pg/ml, P > 0.05) and IL-5 ((41.97 ± 7.93) pg/ml vs. (60.14 ± 8.35) pg/ml, P < 0.05) in BAL fluid and serum sIgE ((0.42 ± 0.05) vs. (0.75 ± 0.06) OD units, P < 0.05) were profoundly reduced. However, the IL-10 level in BAL fluid was significantly increased ((67.74 ± 6.57) pg/ml vs. (44.62 ± 8.81) pg/ml, P < 0.05).
CONCLUSIONSThese results indicated that 1,25(OH)(2)D(3) pretreatment enhanced the inhibitory effects of immunotherapy on allergic airway inflammation. In the treatment of allergic diseases, 1,25(OH)(2)D(3) pretreatment may be beneficial for improving the efficacy of immunotherapy.
Animals ; Asthma ; immunology ; pathology ; therapy ; Bronchoalveolar Lavage Fluid ; immunology ; Calcitriol ; therapeutic use ; Cytokines ; analysis ; Desensitization, Immunologic ; Disease Models, Animal ; Female ; Immunoglobulin E ; blood ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology
10.CRTH2 antagonist ameliorates airway inflammation in rats with asthma.
Hong-qiang LOU ; Yan-feng YING ; Ye HU
Journal of Zhejiang University. Medical sciences 2010;39(1):64-70
OBJECTIVETo investigate the effect of prostaglandin D2 receptor antagonists on the airway inflammation in rats with asthma.
METHODSForty male SD rats were randomly divided into four groups: Group A (normal control), Group B (asthma group), Group C (CRTH2 antagonist BAYu3405 treatment group), Group D (DP1 antagonist BWA868C treatment group). Asthma was induced by ovalbumin (OVA) challenge. The rats in each group were sacrificed 24 h after the last challenge of OVA.DP1/CRTH2 receptors on eosinophils (EOS) were measured by radiological binding assay (RBA). The left lungs were used for histological examinations and bronchoalveolar lavage fluid (BALF) was collected from the right lungs. The total cell numbers, EOS absolute count and differential cell counts in BALF were performed. Serum concentrations of IL-4, 5 and IFN-gamma were measured by ELISA.
RESULTSRats in BAYu3405 treatment group showed profoundly decreased infiltrates of EOS and lymphocytes in the wall of bronchus when compared with those of asthma group and BWA868C treatment group. Serum concentrations of IFN-gamma in rats of BAYu3405 treatment group increased, but IL-4 and IL-5 decreased significantly when compared with those in rats of asthma group and BWA868C treatment group (P<0.01), and BALF EOS count was decreased significantly (P<0.01). Peripheral blood EOS count was higher than that in rats of normal control group, but was not significantly different from that in rats of asthma group and BWA868C treatment group. The combining capacity of CRTH2 and DP total combining capacity on EOS in asthma group, BAYu3405 treatment group and BWA868C treatment group were significantly higher than those in Group A (P<0.01). There was no significant difference in DP1 among all the groups (P>0.05).
CONCLUSIONCRTH2, but not DP1 antagonist can effectively ameliorate airway inflammation in rats with asthma.
Animals ; Asthma ; chemically induced ; drug therapy ; pathology ; Bronchi ; immunology ; pathology ; Carbazoles ; pharmacology ; therapeutic use ; Inflammation ; drug therapy ; Male ; Ovalbumin ; Prostaglandin D2 ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptors, Immunologic ; antagonists & inhibitors ; Receptors, Prostaglandin ; antagonists & inhibitors ; Sulfonamides ; pharmacology ; therapeutic use

Result Analysis
Print
Save
E-mail