1.A new sesquiterpenoid from fresh herb of Centipeda minima.
Qi-Ji LI ; Liu YANG ; Li WANG ; Lang ZHOU ; Yan YANG ; Juan YANG
China Journal of Chinese Materia Medica 2025;50(7):1803-1809
Eleven sesquiterpenoids were isolated from the petroleum ether and ethyl acetate extracted fraction of 95% ethanol extract of fresh Centipeda minima by using modern chromatographic separation techniques such as silica gel, MCI, gel, and semi-preparative liquid chromatography. Their structures were identified using spectroscopy and nuclear magnetic resonance(NMR) calculation as minimin A(1), brevilin A(2), minimolide L(3), minimolide A(4), minimolide B(5), arnicolide D(6), microhelenin C(7), 2β-hydroxyl-2,3-dihydrogen-6-O-angeloylplenolin(8), 11α,13-dihydroarnifolin(9),(1S,2R,5R,6S,7S,8S,10R)-6-hydroxy-2-ethoxy-4-oxopseudoguai-11(13)-en-12,8-olide(10), and pulchellin-2-O-isovalerate(11), among which compound 1 was a new compound, and compounds 9-11 were isolated from Centipeda for the first time. The evaluation results of in vitro anti-inflammatory activity showed that compounds 1-11 possessed significant anti-inflammatory activity, with IC_(50) values ranging from(0.13±0.03) to(13.11±0.17) μmol·L~(-1).
Sesquiterpenes/pharmacology*
;
Animals
;
Asteraceae/chemistry*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Structure
;
Magnetic Resonance Spectroscopy
;
Macrophages/immunology*
2.A new triterpenoid from Elephantopus scaber.
Zu-Xiao DING ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Yan-Qiu LUO ; Zhi-Yong JIANG ; Shi-Kui XU
China Journal of Chinese Materia Medica 2025;50(5):1224-1230
The chemical constituents of the petroleum ether extract derived from the 90% ethanol extract of Elephantopus scaber were investigated. By silica gel column chromatography, C_(18), MCI column chromatography and semi-preparative high performance liquid chromatography, ten compounds were isolated. Their structures were identified as 3β-hydroxy-6β,7β-epoxytaraxeran-14-ene(1), 3β-hydroxyolean-12-en-28-oic acid(2), D-friedoolean-14-ene-3β,7α-diol(3), 3β-hydroxy-11α-methoxyolean-12-ene(4), 3β-hydroxyolean-11,13(18)-diene(5), 11α-hydroxy-β-amyrin(6), betulinic acid(7), 3β-hydroxy-30-norlupan-20-one(8), 6-acetonylchelerythrine(9), and 4',5'-dehydrodiodictyonema A(10) by analysis of the 1D NMR, 2D NMR, MS, and IR spectral data. Among them, compound 1 was a new triterpene and other compounds except compounds 2 and 7 were isolated from this plant for the first time.
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Asteraceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
3.Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckiapubescens and their anti-endothelial damage effect in diabetic retinopathy.
Mengjia LIU ; Tingting LUO ; Rongxian LI ; Wenying YIN ; Fengying YANG ; Di GE ; Na LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):234-244
Diabetic retinopathy, a prevalent and vision-threatening microvascular complication of diabetes mellitus, is the leading cause of blindness among middle-aged and elderly individuals. Natural diterpenoids isolated from Siegesbeckia pubescens demonstrate potent anti-inflammatory properties. This study aimed to identify novel bioactive diterpenoids from S. pubescens and investigate their effects on oxidative stress and inflammatory responses in diabetic retinopathy, both in vitro and in vivo. Three new ent-pimarane-type diterpenoids (1-3) and six known compounds (4-9) were isolated from the aerial parts of S. pubescens. Their structures were elucidated through spectroscopic data interpretation, and absolute configurations were determined by comparing calculated and experimental electronic circular dichroism (ECD) spectra. Among these compounds, 14β,16-epoxy-ent-3β,15α,19-trihydroxypimar-7-ene (5) exhibited the most potent protective effect against high glucose and interleukin-1β (IL-1β)-stimulated human retinal endothelial cells. Mechanistically, compound 5 promoted endothelial cell survival while ameliorating oxidative stress and inflammatory response in diabetic retinopathy, both in vivo and in vitro. These findings not only suggest that diterpenoids such as compound 5 are important anti-inflammatory constituents in S. pubescens, but also indicate that compound 5 may serve as a lead compound for preventing or treating vascular complications associated with diabetic retinopathy.
Diabetic Retinopathy/metabolism*
;
Humans
;
Oxidative Stress/drug effects*
;
Animals
;
Diterpenes, Kaurane/administration & dosage*
;
Asteraceae/chemistry*
;
Male
;
Endothelial Cells/drug effects*
;
Abietanes/administration & dosage*
;
Molecular Structure
;
Mice
;
Anti-Inflammatory Agents/chemistry*
;
Plant Extracts/chemistry*
;
Mice, Inbred C57BL
4.Chemical constituents in different parts of Ixeris sonchifolia based on UPLC-LTQ-Orbitrap-MS~n.
Yi-Ran REN ; Yuan-Yuan ZHAO ; Zhao-Wei LIU ; Zhen-Qing LIU ; Ying LIU
China Journal of Chinese Materia Medica 2023;48(2):430-442
The chemical constituents in stem leaf, root, and flower of Ixeris sonchifolia were identified by the ultra performance li-quid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry(UPLC-LTQ-Orbitrap-MS~n). The separation was performed on an Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) with a mobile phase of water(containing 0.1% formic acid, A)-acetonitrile(B) with gradient elution. With electrospray ionization source, the data of 70% methanol extract from stem leaf, root and flower of I. sonchifolia were collected by high-resolution full-scan Fourier transform spectroscopy, data dependent acquisition, precursor ion scan, and selected ion monitoring in the negative and positive ion modes. The compounds were identified based on accurate molecular weight, retention time, fragment ions, comparison with reference standard, Clog P and references. A total of 131 compounds were identified from the 70% methanol extract of I. sonchifolia, including nucleosides, flavonoids, organic acids, terpenoids, and phenylpropanoids, and 119, 110, and 126 compounds were identified from the stem leaf, root and flower of I. sonchifolia, respectively. In addition, isorhamnetin, isorhamnetin-7-O-sambubioside and caffeylshikimic acid were discovered from I. sonchifolia for the first time. This study comprehensively analyzed and compared the chemical constituents in different parts of I. sonchifolia, which facilitated the discovery of effective substances and the development and application of medicinal material resources of I. sonchifolia.
Drugs, Chinese Herbal/chemistry*
;
Methanol
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry
;
Asteraceae
5.Prediction and analysis of Q-markers of Elephantopus scaber based on its UPLC fingerprint, content determination of components, and in vitro a nti-tumor activity.
Can-Chao JIA ; Ling-Jie LI ; Zhi-Hao ZENG ; Rui-Yin TANG ; De-Zheng JIA ; Min-Juan YANG ; Jin-Yan QIU ; Dong-Mei LI ; Can-Hui XIE ; Guang-Ying WU ; Yang-Xue LI ; Jie-Yi JIANG ; Hong HUANG ; Guan-Lin XIAO ; Da-Ke CAI ; Xiao-Li BI
China Journal of Chinese Materia Medica 2023;48(16):4421-4428
This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 μm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 μL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 μmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.
Humans
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Asteraceae/chemistry*
;
Lung Neoplasms/drug therapy*
6.Three new diterpenoids from whole herb of Carpesium cernuum.
Shu-Hui FENG ; Wei-Qing ZHANG ; Wei LIANG ; Chen YAN
China Journal of Chinese Materia Medica 2023;48(19):5244-5249
The study investigated the chemical constituents from the whole herb of Carpesium cernuum. Three new diterpenoids were isolated from the whole herb of C. cernuum by column chromatography on silica gel, Sephadex LH-20, and semi-preparative HPLC. Their structures were identified by MS, NMR and other spectral techniques. The isolates were identified as(5Z)-2-oxo-2, 10, 14-trimethylhexadeca-5, 13-diene-11α, 18-diol(1),(2E, 10E)-7-[(acetyloxy)methyl]-3, 11, 15-trimethylhexadeca-2, 10, 14-triene-1, 12α-diol(2),(2E, 6Z)-3, 11, 15-trimethylhexadeca-2, 6, 14-triene-1, 12α, 19-triol(3), respectively. The cytotoxic activity of compounds 1-3 were investigated with DU-145, MCF-7, and A549 cells by MTT. The results showed that compound 1 and 3 had certain inhibitory effects on MCF-7 cells, with the inhibition rates of 45.06% and 29.40%, respectively.
Humans
;
Asteraceae/chemistry*
;
MCF-7 Cells
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
;
A549 Cells
7.Research progress on natural guaiane-type sesquiterpenoids and their biological activities.
Jie GUO ; Jia-Ping WANG ; Bo PENG ; Xiao-Qian LIU ; Chen-Xi YANG ; Li-Hua YAN ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2023;48(21):5727-5749
Guaiane-type sesquiterpenoids are a class of terpenoids with [5,7] ring-fused system as the basic skeletal structure composed of three isoprene units, which are substituted by 4,10-dimethyl-7-isopropyl. According to the difference in functional groups and degree of polymerization, they can be divided into simple guaiane-type sesquiterpenoids, sesquiterpene lactones, sesquiterpene dimers, and sesquiterpene trimers. Natural guaiane-type sesquiterpenoids are widely distributed in plants, fungi, and marine organisms, especially in families such as Compositae, Zingiberaceae, Thymelaeaceae, Lamiaceae, and Alismataceae. Guaiane-type sesquiterpenoids have good antibacterial, anti-inflammatory, anticancer, and neuroprotective effects. In this paper, the novel guaiane-type sesquiterpenoids isolated and identified in recent 10 years(2013-2022) and their biological activities were reviewed in order to provide refe-rences for the research and development of guaiane-type sesquiterpenoids.
Humans
;
Molecular Structure
;
Sesquiterpenes, Guaiane
;
Asteraceae/chemistry*
;
Sesquiterpenes
8.Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity.
Chen YAN ; Qun LONG ; Yun-Dong ZHANG ; Gajendran BABU ; Madhu Varier KRISHNAPRIYA ; Jian-Fei QIU ; Jing-Rui SONG ; Qing RAO ; Ping YI ; Mao SUN ; Yan-Mei LI
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):528-535
In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC
Antineoplastic Agents, Phytogenic/pharmacology*
;
Asteraceae/chemistry*
;
Drug Screening Assays, Antitumor
;
Humans
;
K562 Cells
;
Phytochemicals/pharmacology*
;
Sesquiterpenes, Germacrane/pharmacology*
9.Research progress on sesquiterpenes and its pharmacological activities in genus Carpesium.
Di-Lu CHEN ; Xuan LI ; Xiao-Jiang ZHOU
China Journal of Chinese Materia Medica 2020;45(1):37-51
The genus Carpesium plants contain many kinds of sesquiterpenes. Up to now, more than 201 sesquiterpene compounds have been isolated and identified, including 86 germacranolides, 30 eudesmanolides, 29 guaianolides, 23 sesquiterpene dimers, 9 pseudoguaianes, 9 carabranolides, 7 xanthanolides, 6 sesquiterpenes without lactone, 1 eremophilane and 1 tricyclo dodecane sesquiterpene. The reported sesquiterpenes possess a series of pharmacological properties, such as anti-tumor, anti-inflammatory, antibacterial, antiparasitic, insecticidal, and antiviral activities. This paper summarizes the 201 chemical structures and biological activities of sesquiterpenes in genus Carpesium, and provides the scientific basis for the further development and utilization.
Anti-Bacterial Agents
;
Anti-Inflammatory Agents
;
Asteraceae/chemistry*
;
Lactones
;
Molecular Structure
;
Phytochemicals/pharmacology*
;
Sesquiterpenes/pharmacology*
10.Study on mechanism for treating ischemic stroke of Siegesbeckiae Herba based on network pharmacology.
Shuai ZHAO ; Dong-Xue WU ; Xi CHEN ; Yan-Ling ZHANG
China Journal of Chinese Materia Medica 2019;44(13):2727-2735
Xixiancao( Siegesbeckiae Herba) has the effect of treating ischemic stroke( IS),however,the mechanism has not been fully elucidated. In this study,combined with Lipinski's five principles and Veber oral bioavailability rules,68 chemical components of Xixiancao were obtained by database and literature search. Based on the reverse targeting,248 potential targets were obtained and mapped it to the ischemic stroke target set,47 potential targets for the treatment of ischemic stroke were obtained. Molecular docking technique was used to verify that the Xixiancao component has good binding activity to potential targets. GO enrichment analysis and pathway analysis were performed on potential targets using Clue GO. GO enrichment analysis showed that Xixiancao was mainly involved in life processes such as neuronal apoptosis,cholesterol storage and blood pressure regulation. Pathway analysis showed that Xixiancao may promote vascular repairing and regeneration by regulating the expression of ADAMTS1,FLT1 and KDR in VEGFA-VEGFR2 signaling pathway,activate cell survival signals and inhibit neuronal apoptosis by regulating the expression of CAMK2 AA,MDM2,MAPK1,MAPK3,CDK5 and MAPK10 in brain-derived neurotrophic factor signaling pathway and PI3 K-Akt signaling pathway. Lipid homeostasis and inflammation may also be regulated by Xixiancao through regulating the expression of ESR1,NR1 H3,PPARA,PPARG in the nuclear receptor signaling pathway. In addition,Xixiancao could also prevent platelet aggregation by regulating the expression of ITGA2 B,F2,F10,and ALB,and play an antithrombotic role. The results of this study indicate that Xixiancao plays an important role in the treatment of ischemic stroke mainly through anti-thrombosis,promoting angiogenesis,protecting neurons,anti-inflammatory and regulating blood pressure and lipids.
Asteraceae
;
chemistry
;
Brain Ischemia
;
drug therapy
;
Drugs, Chinese Herbal
;
therapeutic use
;
Humans
;
Molecular Docking Simulation
;
Signal Transduction
;
Stroke
;
drug therapy

Result Analysis
Print
Save
E-mail