1.Improvement of catalytic activity and thermostability of glucose oxidase from Aspergillus heteromorphus.
Shanglin YU ; Qiao ZHOU ; Honghai ZHANG ; Yingguo BAI ; Huiying LUO ; Xiaojun YANG ; Bin YAO
Chinese Journal of Biotechnology 2025;41(1):296-307
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase AtGOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase AhGODB derived from Aspergillus heteromorphus was expressed in Pichia pastoris and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.
Glucose Oxidase/chemistry*
;
Enzyme Stability
;
Aspergillus/genetics*
;
Pichia/metabolism*
;
Temperature
;
Catalysis
;
Fungal Proteins/metabolism*
;
Hot Temperature
2.Oral gavage of Lactococcus lactis expressing urate oxidase regulates serum uric acid level in mice.
Hao CHENG ; Guoqing XIONG ; Jiazhen CUI ; Zhili CHEN ; Chen ZHU ; Na SONG ; Qingyang WANG ; Xianghua XIONG ; Gang LIU ; Huipeng CHEN
Chinese Journal of Biotechnology 2024;40(11):4111-4119
Urate oxidase (Uox) plays a pivotal role in uric acid (UA) degradation, and it has been applied in controlling serum UA level in clinical treatment of hyperuricemia (HUA). However, because Uox is a heterogenous protein to the human body, the immune rejections typically occur after intravenous administration, which greatly hampers the application of Uox-based agents. In this study, we used Lactococcus lactis NZ9000, a food-grade bacterium, as a host to express exogenous Uox genes, to generate the Uox-expressing engineered strains to treat HUA. Aspergillus flavus-derived Uox (aUox) and the "resurrected" human-derived Uox (hUox) were cloned into vector and expressed in NZ9000, to generate engineered strains, respectively. The engineered NZ9000 strains were confirmed to express Uox and showed UA-lowering activity in a time-dependent manner in vitro. Next, in an HUA mice model established by oral gavage of yeast paste, the UA levels were increased by 85.4% and 106.2% at day 7 and day 14. By contrast, in mice fed with NZ9000-aUox, the UA levels were increased by 39.5% and 48.3% while in mice fed with NZ9000-hUox were increased by 57.0% and 82.9%, suggesting a UA-lowering activity of both engineered strains. Furthermore, compared with allopurinol, the first-line agent for HUA treatment, mice fed with NZ9000-aUox exhibited comparable liver safety but better kidney safety than allopurinol, indicating that the use of engineered NZ9000 strains not only alleviated kidney injury caused by HUA, but could also avoided the risk of kidney injury elicited by using allopurinol. Collectively, our study offers an effective and safe therapeutic approach for HUA long-term treatment and controlling.
Animals
;
Lactococcus lactis/metabolism*
;
Urate Oxidase/genetics*
;
Mice
;
Uric Acid/blood*
;
Hyperuricemia
;
Humans
;
Administration, Oral
;
Aspergillus flavus/genetics*
;
Male
3.Expression of β-xylosidase An-xyl from Aspergillus niger and characterization of its xylose tolerance.
Le LI ; Cheng PENG ; Kunpeng YU ; Yiling TANG ; Yanling LIN ; Lijun LI ; Hui NI ; Qingbiao LI
Chinese Journal of Biotechnology 2023;39(11):4593-4607
The hydrolysis of xylo-oligosaccharides catalyzed by β-xylosidase plays an important role in the degradation of lignocellulose. However, the enzyme is easily inhibited by its catalytic product xylose, which severely limits its application. Based on molecular docking, this paper studied the xylose affinity of Aspergillus niger β-xylosidase An-xyl, which was significantly differentially expressed in the fermentation medium of tea stalks, through cloning, expression and characterization. The synergistic degradation effect of this enzyme and cellulase on lignocellulose in tea stems was investigated. Molecular docking showed that the affinity of An-xyl to xylose was lower than that of Aspergillus oryzae β-xylosidase with poor xylose tolerance. The Ki value of xylose inhibition constant of recombinant-expressed An-xyl was 433.2 mmol/L, higher than that of most β-xylosidases of the GH3 family. The Km and Vmax towards pNPX were 3.6 mmol/L and 10 000 μmol/(min·mL), respectively. The optimum temperature of An-xyl was 65 ℃, the optimum pH was 4.0, 61% of the An-xyl activity could be retained upon treatment at 65 ℃ for 300 min, and 80% of the An-xyl activity could be retained upon treatment at pH 2.0-8.0 for 24 h. The hydrolysis of tea stem by An-xyl and cellulase produced 19.3% and 38.6% higher reducing sugar content at 2 h and 4 h, respectively, than that of using cellulase alone. This study showed that the An-xyl mined from differential expression exhibited high xylose tolerance and higher catalytic activity and stability, and could hydrolyze tea stem lignocellulose synergistically, which enriched the resource of β-xylosidase with high xylose tolerance, thus may facilitate the advanced experimental research and its application.
Aspergillus niger/genetics*
;
Xylose/metabolism*
;
Molecular Docking Simulation
;
Xylosidases/genetics*
;
Cellulases
;
Tea
;
Hydrogen-Ion Concentration
;
Substrate Specificity
4.Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger.
Zhi Na YIN ; Wen Jia WU ; Chong Zhen SUN ; Hui Fan LIU ; Wen Bo CHEN ; Qi Ping ZHAN ; Zhuo Gui LEI ; Xuan XIN ; Juan Juan MA ; Kun YAO ; Tian MIN ; Meng Meng ZHANG ; Hui WU
Biomedical and Environmental Sciences 2019;32(1):11-21
OBJECTIVE:
A strain of Aspergillus niger (A. niger), capable of releasing bound phenolic acids from wheat bran, was isolated. This strain was identified by gene sequence identification. The antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by this A. niger strain (FA-WB) were evaluated.
METHODS:
Molecular identification techniques based on PCR analysis of specific genomic sequences were conducted; antioxidant ability was examined using oxygen radical absorbance capacity (ORAC), cellular antioxidant activity (CAA) assays, and erythrocyte hemolysis assays. RAW264.7 cells were used as a model to detect anti-inflammatory activity.
RESULTS:
The filamentous fungal isolate was identified to be A. niger. ORAC and CAA assay showed that FA-WB had better antioxidant activity than that of the ferulic acid standard. The erythrocyte hemolysis assay results suggested that FA-WB could attenuate AAPH-induced oxidative stress through inhibition of reactive oxy gen species (ROS) generation. FA-WB could significantly restore the AAPH-induced increase in intracellular antioxidant enzyme activities to normal levels as well as inhibit the intracellular malondialdehyde formation. TNF-a, IL-6, and NO levels indicated that FA-WB can inhibit the inflammation induced by lipopolysaccharide (LPS).
CONCLUSION
Ferulic acid released from wheat bran by a new strain of A. niger had good anti-inflammatory activity and better antioxidant ability than standard ferulic acid.
Animals
;
Anti-Inflammatory Agents
;
metabolism
;
pharmacology
;
Antioxidants
;
metabolism
;
pharmacology
;
Aspergillus niger
;
genetics
;
isolation & purification
;
metabolism
;
Coumaric Acids
;
metabolism
;
pharmacology
;
DNA, Fungal
;
analysis
;
Dietary Fiber
;
microbiology
;
Erythrocytes
;
drug effects
;
metabolism
;
Fermentation
;
Hep G2 Cells
;
Humans
;
Interleukin-6
;
metabolism
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
RAW 264.7 Cells
;
Sheep
;
Tumor Necrosis Factor-alpha
;
metabolism
5.Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor.
Ze-Hong WU ; Dong LIU ; Ying XU ; Jian-Liang CHEN ; Wen-Han LIN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):219-224
Chemical examination of an EtOAc extract of cultured Aspergillus versicolor fungus from deep-sea sediments resulted in the isolation of four xanthones, eight anthraquinones and five alkaloids, including a new xanthone, oxisterigmatocystin D (1) and a new alkaloid, aspergillusine A (13). High resolution electron impact mass spectrometry (HR-EI-MS), FT-IR spectroscopy, and NMR techniques were used to elucidate the structures of these compounds, and the absolute configuration of compound 1 was established by its NMR features and coupling constant. Furthermore, the biosynthesis pathway of these xanthones and anthraquinones were deduced, and their antioxidant activity and cytotoxicity in human cancer cell lines (HTC-8, Bel-7420, BGC-823, A549, and A2780) were evaluated. The trolox equivalent antioxidant capacity (TEAC) assay indicated most of the xanthones and anthraquinones possessing moderate antioxidant activities. The Nrf2-dependent luciferase reporter gene assay revealed that compounds 6, 7, 9, and 12 potentially activated the expression of Nrf2-regulated gene. In addition, compounds 5 and 11 showed weak cytotoxicity on A with the IC values of 25.97 and 25.60 μmol·L, respectively.
Anthraquinones
;
Antioxidants
;
chemistry
;
isolation & purification
;
metabolism
;
pharmacology
;
Aspergillus
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Gene Expression
;
drug effects
;
Humans
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
NF-E2-Related Factor 2
;
genetics
;
metabolism
;
Seawater
;
microbiology
;
Spectroscopy, Fourier Transform Infrared
;
Xanthones
;
chemistry
;
isolation & purification
;
metabolism
;
pharmacology
6.Molecular Identification and Amphotericin B Susceptibility Testing of Clinical Isolates of Aspergillus From 11 Hospitals in Korea.
Min Seok HEO ; Jong Hee SHIN ; Min Ji CHOI ; Yeon Joon PARK ; Hye Soo LEE ; Sun Hoe KOO ; Won Gil LEE ; Soo Hyun KIM ; Myung Geun SHIN ; Soon Pal SUH ; Dong Wook RYANG
Annals of Laboratory Medicine 2015;35(6):602-610
BACKGROUND: We investigated the species distribution and amphotericin B (AMB) susceptibility of Korean clinical Aspergillus isolates by using two Etests and the CLSI broth microdilution method. METHODS: A total of 136 Aspergillus isolates obtained from 11 university hospitals were identified by sequencing the internal transcribed spacer (ITS) and beta-tubulin genomic regions. Minimal inhibitory concentrations (MICs) of AMB were determined in Etests using Mueller-Hinton agar (Etest-MH) and RPMI agar (Etest-RPG), and categorical agreement with the CLSI method was assessed by using epidemiological cutoff values. RESULTS: ITS sequencing identified the following six Aspergillus species complexes: Aspergillus fumigatus (42.6% of the isolates), A. niger (23.5%), A. flavus (17.6%), A. terreus (11.0%), A. versicolor (4.4%), and A. ustus (0.7%). Cryptic species identifiable by beta-tubulin sequencing accounted for 25.7% (35/136) of the isolates. Of all 136 isolates, 36 (26.5%) had AMB MICs of > or =2 microg/mL by the CLSI method. The categorical agreement of Etest-RPG with the CLSI method was 98% for the A. fumigatus, A. niger, and A. versicolor complexes, 87% for the A. terreus complex, and 37.5% for the A. flavus complex. That of Etest-MH was < or =75% for the A. niger, A. flavus, A. terreus, and A. versicolor complexes but was higher for the A. fumigatus complex (98.3%). CONCLUSIONS: Aspergillus species other than A. fumigatus constitute about 60% of clinical Aspergillus isolates, and reduced AMB susceptibility is common among clinical isolates of Aspergillus in Korea. Molecular identification and AMB susceptibility testing by Etest-RPG may be useful for characterizing Aspergillus isolates of clinical relevance.
Amphotericin B/*pharmacology
;
Antifungal Agents/*pharmacology
;
Aspergillus/*drug effects/isolation & purification
;
DNA, Fungal/chemistry/genetics/metabolism
;
Hospitals
;
Humans
;
Microbial Sensitivity Tests
;
Mycoses/diagnosis/microbiology
;
Republic of Korea
;
Sequence Analysis, DNA
;
Tubulin/genetics
7.Molecular cloning and over-expression of a fructosyltransferase from Aspergillus niger QU10.
Guoqing ZHANG ; Jing YANG ; Jiaji SHI ; Shijun QIAN ; Yapeng CHAO
Chinese Journal of Biotechnology 2015;31(4):512-522
The main commercial production of fructooligosaccharides (FOS) comes from enzymatic transformation using sucrose as substrate by microbial enzyme fructosyltransferase. A fructosyltransferase genomic DNA was isolated from Aspergillus niger QU10 by PCR. The nucleotide sequence showed a 1 941 bp size, and has been submitted to GenBank (KF699529). The cDNA of the fructosyltransferase, containing an open reading frame of 1 887 bp, was further cloned by RT-PCR. The fructosyltransferase gene from Aspergillus niger was functionally expressed both in Escherichia coli and Pichia pastoris GS 115. The highest activity value for the construction with the α-factor signal peptide reached 431 U/mL after 3 days of incubation. The recombinant enzyme is extensively glycosylated, and the active form is probably represented by a homodimer with an apparent molecular mass of 200 kDa as judged from mobility in seminative PAGE gels. The extracellular recombinant enzyme converted sucrose mostly to FOS, mainly 1-kestose and nystose, liberating glucose. FOS reached a maximal value and represented about 58% of total sugars present in the reaction mixture after 4 h reaction. The results suggest that the availability of recombinant Pichia pastoris as a new source of a FOS-producing enzyme might result of biotechnology interest for industrial application.
Aspergillus niger
;
enzymology
;
genetics
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary
;
Escherichia coli
;
Fungal Proteins
;
genetics
;
metabolism
;
Glycosylation
;
Hexosyltransferases
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Molecular Weight
;
Pichia
;
Sucrose
;
metabolism
;
Trisaccharides
;
metabolism
8.Display cellulolytic enzymes on Saccharomyces cerevisiae cell surface by using Flo1p as an anchor protein for cellulosic ethanol production.
Chunling MO ; Yueyue YANG ; Ning CHEN ; Xiushan YANG ; Shen TIAN
Chinese Journal of Biotechnology 2014;30(9):1401-1413
In this study, we constructed a yeast consortium surface-display expression system by using Flo1 as an anchor protein. Endoglucanase II (EGII) and cellobiohydrolase II (CBHII) from Trichoderma reesei, and β3-glucosidase 1 (BGLI) from Aspergillus aculeatus were immobilized on Saccharomyces cerevisiae Y5. We constructed the cellulose-displaying expression yeast consortium (Y5/fEGII:Y5/fCBHII:Y5/fBGLI = 1:1:1) and investigated the enzymatic ability and ethanol fermentation. The displayed cellulolytic enzymes was stabile during the 96-h fermentation. The yeast consortium produced 0.77 g/L ethanol from 10 g/L phosphoric acid swollen cellulose (PASC) within 96 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.35 g/g, which correspond to 68.6% of the theoretical yield.
Aspergillus
;
enzymology
;
Cellulase
;
genetics
;
Cellulose
;
metabolism
;
Cellulose 1,4-beta-Cellobiosidase
;
genetics
;
Enzymes, Immobilized
;
genetics
;
Ethanol
;
metabolism
;
Fermentation
;
Glucosidases
;
genetics
;
Mannose-Binding Lectins
;
metabolism
;
Protein Binding
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
metabolism
;
Trichoderma
;
enzymology
9.Increasing activity of a monoamine oxidase by random mutation.
Xuejun CHEN ; Yuanhui MA ; Jianhua SHAO ; Dunyue LAI ; Zhiguo WANG ; Zhenming CHEN
Chinese Journal of Biotechnology 2014;30(1):109-118
The monoamine oxidase mutant A-1 (F210V/L213C) from Aspergillus niger showed some catalytic activity on mexiletine. To futher improve its activity, the mutant was subjected to directed evolution with MegaWHOP PCR (Megaprimer PCR of Whole Plasmid) and selection employing a high-throughput agar plate-based colorimetric screen. This approach led to the identification of a mutant ep-1, which specific activity was 189% of that for A-1. The ep-1 also showed significantly improved enantioselectivity, with the E value increased from 101 to 282; its kinetic k(cat)/K(m) value increased from 0.001 51 mmol/(L x s) to 0.002 89 mmol/(L x s), suggesting that catalytic efficiency of ep-1 had been improved. The mutant showed obviously higher specific activities on 7 of all tested 11 amines substrates, and the others were comparable. Sequence analysis revealed that there was a new mutation T162A on ep-1. The molecular dynamics simulation indicated that T162A may affect the secondary structure of the substrate channel and expand the binding pocket.
Aspergillus niger
;
enzymology
;
Catalysis
;
Kinetics
;
Monoamine Oxidase
;
genetics
;
metabolism
;
Mutation
;
Polymerase Chain Reaction
;
Protein Engineering
;
Protein Structure, Secondary
;
Substrate Specificity
10.Gene cloning, expression of a feruloyl esterase A and purification of its hydrolysis products.
Yan ZENG ; Yanyan GONG ; Minchen WU ; Xin YIN ; Cunduo TANG
Chinese Journal of Biotechnology 2014;30(3):425-434
To express feruloyl esterase A from Aspergillus oryzae in Pichia pastoris expression system and study its hydrolysis function, explore the conditions and effects of purification for ferulic acid extracts by macroporos resin. Using the total RNA from A. oryzae CICC 40186 as the template, we amplified coding sequence AorfaeA encoding a mature feruloyl esterase A (AorFaeA) by RT-PCR technique. Then, the coding sequence AorfaeA was successfully expressed in Pichia pastoris GS115 mediated by an expression plasmid pPIC9K. The purified recombinant AorFaeA (reAorFaeA) showed one single band on SDS-PAGE with an apparent molecular weight of 39.0 kDa. The maximum activity of reAorFaeA to methyl ferulate, measured by high-performance liquid chromatography (HPLC), was 58.35 U/mg. Then, reAorFaeA was used to release ferulic acid from de-starched wheat bran in the presence of xylanase. The purification tests for ferulic acid from the enzymatic hydrolysate were carried out with preselected macroporous resins. The results showed that macroporous resin HPD-300 had much higher adsorption and desorption capacities. Ferulic acid could be quantitatively recovered by 50% of the eluent concentration at a flow speed of 1 mL/min. Under the purification condition, the recovery ratio of ferulic acid was 92%, and the content of ferulic acid was increased from 0.13% in the raw material to 10.55%. This work exploits the breakdown of ferulic acid by recombinant enzymeand provids a good strategy to its "green production".
Aspergillus oryzae
;
enzymology
;
Carboxylic Ester Hydrolases
;
biosynthesis
;
genetics
;
Cloning, Molecular
;
Coumaric Acids
;
chemistry
;
Electrophoresis, Polyacrylamide Gel
;
Hydrolysis
;
Molecular Weight
;
Pichia
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail