1.Rubioncolin C targets cathepsin D to induce autophagosome accumulation and suppress gastric cancer.
Liang ZHANG ; Jun-Jie CHEN ; Man-Xiang GU ; Yi-Fan ZHONG ; Yuan SI ; Ying LIU
China Journal of Chinese Materia Medica 2025;50(5):1267-1275
This study aimed to explore the molecular mechanism of rubioncolin C(RuC) in inhibiting gastric cancer(GC). AGS and MGC803 cell lines were selected as cellular models. After treating the cells with RuC at different concentrations, the effects of RuC on the proliferation ability of GC cells were assessed using the CCK-8 method, real-time cellular analysis(RTCA), and colony formation assays. Transmission electron microscopy was used to observe subcellular structural changes. Immunofluorescence was applied to detect LC3 fluorescent foci. Acridine orange staining was used to evaluate the state of intracellular lysosomes. Western blot was employed to detect the expression of autophagy-related proteins LC3Ⅱ, P62, and lysosomal cathepsin D(CTSD). The SuperPred online tool was used to predict the target proteins that bound to RuC, and molecular docking analysis was conducted to identify the interaction sites between RuC and CTSD. The drug affinity responsive target stability(DARTS) assay was performed to detect the direct binding interaction between RuC and CTSD. The results showed that RuC significantly inhibited the proliferation and colony formation of GC cells at low concentrations, with 24-hour half-maximal inhibitory concentrations(IC_(50)) of 3.422 and 2.697 μmol·L~(-1) for AGS and MGC803 cells, respectively. After 24 hours of treatment with RuC at concentrations of 1, 2, and 3 μmol·L~(-1), the colony formation rates for AGS cells were 61.0%±1.5%, 28.0%±0.5%, and 18.2%±0.5%, respectively, while the rates for MGC803 cells were 56.0%±0.5%, 23.3%±1.0%, and 11.8%±1.0%, all of which were significantly reduced. Transmission electron microscopy revealed that RuC promoted an increase in autophagosome formation in GC cells. Immunofluorescence detection showed that LC3 fluorescent foci of GC cells increased with the increase in RuC dose. RuC up-regulated the expression of autophagy-related proteins LC3Ⅱ and P62 in GC cells. Acridine orange staining indicated that RuC altered the acidic environment of lysosomes. SuperPred online prediction identified CTSD as a potential target protein of RuC. Western blot analysis revealed that RuC induced the up-regulation of the inactive precursor of CTSD in GC cells. CTSD activity assays indicated that RuC reduced the activity of CTSD. Molecular docking simulations found that RuC bound to the substrate-binding region of CTSD, forming hydrogen bonds with the Tyr205 and Asp231 residues. Microscale thermophoresis and DARTS assays further confirmed that RuC directly bound to CTSD. In summary, RuC inhibits lysosomal activity by targeting and down-regulating the expression of CTSD, thereby inducing autophagosome accumulation in GC cells.
Humans
;
Stomach Neoplasms/enzymology*
;
Cathepsin D/chemistry*
;
Cell Line, Tumor
;
Molecular Docking Simulation
;
Cell Proliferation/drug effects*
;
Autophagosomes/metabolism*
;
Autophagy/drug effects*
2.Alamandine inhibits pathological retinal neovascularization by targeting the MrgD-mediated HIF-1α/VEGF pathway.
Kun ZHAO ; Yaping JIANG ; Wen HUANG ; Yukang MAO ; Yihui CHEN ; Peng LI ; Chuanxi YANG
Journal of Zhejiang University. Science. B 2025;26(10):1015-1036
Retinopathy of prematurity (ROP) is a vision-threatening disorder that leads to pathological growth of the retinal vasculature due to hypoxia. Here, we investigated the potential effects of alamandine, a novel heptapeptide in the renin-angiotensin system (RAS), on hypoxia-induced retinal neovascularization and its underlying mechanisms. In vivo, the C57BL/6J mice with oxygen-induced retinopathy (OIR) were injected intravitreally with alamandine (1.0 μmol/kg per eye). In vitro, human retinal microvascular endothelial cells (HRMECs) were utilized to investigate the effects of alamandine (10 μg/mL) on proliferation, apoptosis, migration, and tubular formation under vascular endothelial growth factor (VEGF) stimulation. Single-cell RNA sequencing (scRNA-seq) matrix data from the Gene Expression Omnibus (GEO) database and RAS-related genes from the Molecular Signatures Database (MSigDB) were sourced for subsequent analyses. By integrating scRNA-seq data across multiple species, we identified that RAS-associated endothelial cell populations were highly related to retinal neovascularization. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a significant decrease in alamandine levels in both the serum and retina of OIR mice compared to those in the control group. Next, alamandine ameliorated hypoxia-induced retinal pathological neovascularization and physiologic revascularization in OIR mice. In vitro, alamandine effectively mitigated VEGF-induced proliferation, scratch wound healing, and tube formation of HRMECs primarily by inhibiting the hypoxia-inducible factor-1α (HIF-1α)/VEGF pathway. Further, coincubation with D-Pro7 (Mas-related G protein-coupled receptor D (MrgD) antagonist) hindered the beneficial impacts of alamandine on hypoxia-induced pathological angiogenesis both in vivo and in vitro. Our findings suggested that alamandine could mitigate retinal neovascularization by targeting the MrgD-mediated HIF-1α/VEGF pathway, providing a potential therapeutic agent for OIR prevention and treatment.
Animals
;
Retinal Neovascularization/prevention & control*
;
Mice, Inbred C57BL
;
Vascular Endothelial Growth Factor A/metabolism*
;
Humans
;
Mice
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Oligopeptides/therapeutic use*
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Endothelial Cells/drug effects*
;
Retinopathy of Prematurity/drug therapy*
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Renin-Angiotensin System/drug effects*
;
Cells, Cultured
3.Research progress of nucleus tractus solitarius involved in central regulation of hypertension.
Yu TIAN ; Na LI ; Yi ZHANG ; Hong-Jie WANG
Acta Physiologica Sinica 2025;77(1):85-94
The nucleus tractus solitarius (NTS) is the primary brain region for receiving and integrating cardiovascular afferent signals. It plays a crucial role in maintaining balance of autonomic nervous system and regulating blood pressure through cardiovascular reflexes. Neurons within the NTS form complex synaptic connections and interact reciprocally with other brain regions. The NTS regulates autonomic nervous system activity and arterial blood pressure through modulating baroreflex, sympathetic nerve activity, renin-angiotensin-aldosterone system, and oxidative stress. Dysfunctions in NTS activity may contribute to hypertension. Understanding the NTS' role in centrally regulating blood pressure and alterations of neurotransmission or signaling pathways in the NTS may provide rationale for new therapeutic strategies of prevention and treatment. This review summarizes the research findings on autonomic nervous system regulation and arterial blood pressure control by NTS, as well as unresolved questions, in order to provide reference for future investigation.
Solitary Nucleus/physiopathology*
;
Hypertension/physiopathology*
;
Humans
;
Animals
;
Autonomic Nervous System/physiopathology*
;
Blood Pressure/physiology*
;
Baroreflex/physiology*
;
Renin-Angiotensin System/physiology*
;
Sympathetic Nervous System/physiology*
4.Protective effect of aliskiren on renal injury in AGT-REN double transgenic hypertensive mice.
Xiao-Ling YANG ; Yan-Yan CHEN ; Hua ZHAO ; Bo-Yang ZHANG ; Xiao-Fu ZHANG ; Xiao-Jie LI ; Xiu-Hong YANG
Acta Physiologica Sinica 2025;77(3):408-418
This study aims to investigate the effects of renin inhibitor aliskiren on kidney injury in human angiotensinogen-renin (AGT-REN) double transgenic hypertensive (dTH) mice and explore its possible mechanism. The dTH mice were divided into hypertension group (HT group) and aliskiren intervention group (HT+Aliskiren group), while wild-type C57BL/6 mice were served as the control group (WT group). Blood pressure data of mice in HT+Aliskiren group were collected after 28 d of subcutaneous penetration of aliskiren (20 mg/kg), and the damage of renal tissue structure and collagen deposition were observed by HE, Masson and PAS staining. The ultrastructure of kidney was observed by transmission electron microscope. Coomassie bright blue staining and biochemical analyzer were used to detect renal function injury. The expression of renin-angiotensin system (RAS) was determined by ELISA and immunohistochemistry. The contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in kidney were determined by chemiluminescence method. The content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine (3-NT), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4) were detected by Western blot analysis. The results showed that compared with WT group, the blood pressure of mice in HT group was significantly increased. The renal tissue structure in HT group showed glomerular sclerosis, severe interstitial tubular injury, and increased collagen deposition. In addition, 24 h urinary protein, serum creatinine and urea levels increased. Serum and renal tissue levels of angiotensin II (Ang II) were increased, serum angiotensin-(1-7) [Ang-(1-7)] expression was decreased, and renal Ang-(1-7) expression was elevated. The expressions of ACE, Ang II type 1 receptor (AT1R) and MasR in renal tissue were increased, while the expression of ACE2 was decreased. MDA content increased, SOD content decreased, and the expressions of p47phox, iNOS, 3-NT, NOX2 and NOX4 were increased. However, aliskiren reduced blood pressure in dTH mice, improved renal structure and renal function, reduced Ang II and Ang-(1-7) levels in serum and renal tissue, reduced the expression of ACE and AT1R in renal tissue, increased the expression of ACE2 and MasR in renal tissue, and decreased the above levels of oxidative stress indexes in dTH mice. These results suggest that aliskiren may play a protective role in hypertensive renal injury by regulating the balance between ACE-Ang II-AT1R and ACE2-Ang-(1-7)-MasR axes and inhibiting oxidative stress.
Animals
;
Fumarates/therapeutic use*
;
Mice
;
Renin/antagonists & inhibitors*
;
Amides/therapeutic use*
;
Mice, Inbred C57BL
;
Hypertension/physiopathology*
;
Mice, Transgenic
;
Kidney/pathology*
;
Angiotensinogen/genetics*
;
Renin-Angiotensin System/drug effects*
;
NADPH Oxidases/metabolism*
;
Male
;
Antihypertensive Agents/pharmacology*
;
Humans
;
Superoxide Dismutase/metabolism*
;
NADPH Oxidase 4
5.Research progress of the interaction between RAAS and clock genes in cardiovascular diseases.
Rui-Ling MA ; Yi-Yuan WANG ; Yu-Shun KOU ; Lu-Fan SHEN ; Hong WANG ; Ling-Na ZHANG ; Jiao TIAN ; Lin YI
Acta Physiologica Sinica 2025;77(4):669-677
The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.
Humans
;
Renin-Angiotensin System/genetics*
;
Cardiovascular Diseases/genetics*
;
CLOCK Proteins/physiology*
;
Animals
6.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
7.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
8.Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer's Disease Model Mice.
Zhuoze WU ; Xiaojie LIU ; Yuntai WANG ; Zimeng ZENG ; Wei CHEN ; Hao LI
Neuroscience Bulletin 2025;41(4):600-614
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice. Through a combination of bioinformatics prediction and experimental validation, we identified the miR-29c/Bace1 pathway as a potential regulatory mechanism by which Lamr1-ps1 influences AD pathology. Importantly, augmenting the miR-29c-3p levels in mice ameliorated memory deficits, underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention. This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for considering miR-29c as a viable therapeutic target, offering a novel avenue for AD research and treatment strategies.
Animals
;
Alzheimer Disease/pathology*
;
Pseudogenes/genetics*
;
Mice
;
Memory Disorders/metabolism*
;
MicroRNAs/genetics*
;
Disease Models, Animal
;
Spatial Learning/physiology*
;
Mice, Transgenic
;
Presenilin-1/genetics*
;
Male
;
Amyloid Precursor Protein Secretases/metabolism*
;
Mice, Inbred C57BL
;
Aspartic Acid Endopeptidases/metabolism*
9.Research Progress on Obesity-Associated Kidney Diseases.
Rui-Feng YANG ; Wen WU ; Peng ZHANG
Acta Academiae Medicinae Sinicae 2025;47(1):77-85
The pathogenesis of obesity-associated kidney disease (OAKD) involves many aspects,including the overactivation of the renin-angiotensin-aldosterone system,insulin resistance,chronic inflammation,disorder of lipid metabolism and imbalance of gut microecology.Treatment strategies for OAKD focus on lifestyle adjustments,pharmacotherapy,bariatric surgery,and fecal microbiota transplantation.A deeper understanding of the hazards of OAKD and its pathogenesis will contribute to the development of personalized and precise strategies for prevention,diagnosis and treatment of OAKD in the future.
Humans
;
Obesity/complications*
;
Kidney Diseases/therapy*
;
Renin-Angiotensin System
;
Insulin Resistance
10.Genetic Subtypes and Pretreatment Drug Resistance in the Newly Reported Human Immunodeficiency Virus-Infected Men Aged≥50 Years Old in Guangxi.
Ning-Ye FANG ; Wen-Cui WEI ; Jian-Jun LI ; Ping CEN ; Xian-Xiang FENG ; Dong YANG ; Kai-Ling TANG ; Shu-Jia LIANG ; Yu-Lan SHAO ; Hua-Xiang LU ; He JIANG ; Qin MENG ; Shuai-Feng LIU ; Qiu-Ying ZHU ; Huan-Huan CHEN ; Guang-Hua LAN ; Shi-Xiong YANG ; Li-Fang ZHOU ; Jing-Lin MO ; Xian-Min GE
Acta Academiae Medicinae Sinicae 2023;45(3):399-404
Objective To analyze the genetic subtypes of human immunodeficiency virus (HIV) and the prevalence of pretreatment drug resistance in the newly reported HIV-infected men in Guangxi. Methods The stratified random sampling method was employed to select the newly reported HIV-infected men aged≥50 years old in 14 cities of Guangxi from January to June in 2020.The pol gene of HIV-1 was amplified by nested reverse transcription polymerase chain reaction and then sequenced.The mutation sites associated with drug resistance and the degree of drug resistance were then analyzed. Results A total of 615 HIV-infected men were included in the study.The genetic subtypes of CRF01_AE,CRF07_BC,and CRF08_BC accounted for 57.4% (353/615),17.1% (105/615),and 22.4% (138/615),respectively.The mutations associated with the resistance to nucleoside reverse transcriptase inhibitors (NRTI),non-nucleoside reverse transcriptase inhibitors (NNRTI),and protease inhibitors occurred in 8 (1.3%),18 (2.9%),and 0 patients,respectively.M184V (0.7%) and K103N (1.8%) were the mutations with the highest occurrence rates for the resistance to NRTIs and NNRTIs,respectively.Twenty-two (3.6%) patients were resistant to at least one type of inhibitors.Specifically,4 (0.7%),14 (2.3%),4 (0.7%),and 0 patients were resistant to NRTIs,NNRTIs,both NRTIs and NNRTIs,and protease inhibitors,respectively.The pretreatment resistance to NNRTIs had much higher frequency than that to NRTIs (2.9% vs.1.3%;χ2=3.929,P=0.047).The prevalence of pretreatment resistance to lamivudine,zidovudine,tenofovir,abacavir,rilpivirine,efavirenz,nevirapine,and lopinavir/ritonavir was 0.8%, 0.3%, 0.7%, 1.0%, 1.3%, 2.8%, 2.9%, and 0, respectively. Conclusions CRF01_AE,CRF07_BC,and CRF08_BC are the three major strains of HIV-infected men≥50 years old newly reported in Guangxi,2020,and the pretreatment drug resistance demonstrates low prevalence.
Male
;
Humans
;
Middle Aged
;
Reverse Transcriptase Inhibitors/therapeutic use*
;
HIV Infections/drug therapy*
;
Drug Resistance, Viral/genetics*
;
China/epidemiology*
;
Mutation
;
HIV-1/genetics*
;
Protease Inhibitors/therapeutic use*
;
Genotype

Result Analysis
Print
Save
E-mail