1.Ethical considerations for artificial intelligence-enhanced brain-computer interface.
Yuyu CAO ; Yuhang XUE ; Hengyuan YANG ; Fan WANG ; Tianwen LI ; Lei ZHAO ; Yunfa FU
Journal of Biomedical Engineering 2025;42(5):1085-1091
Artificial intelligence-enhanced brain-computer interfaces (BCI) are expected to significantly improve the performance of traditional BCIs in multiple aspects, including usability, user experience, and user satisfaction, particularly in terms of intelligence. However, such AI-integrated or AI-based BCI systems may introduce new ethical issues. This paper first evaluated the potential of AI technology, especially deep learning, in enhancing the performance of BCI systems, including improving decoding accuracy, information transfer rate, real-time performance, and adaptability. Building on this, it was considered that AI-enhanced BCI systems might introduce new or more severe ethical issues compared to traditional BCI systems. These include the possibility of making users' intentions and behaviors more predictable and manipulable, as well as the increased likelihood of technological abuse. The discussion also addressed measures to mitigate the ethical risks associated with these issues. It is hoped that this paper will promote a deeper understanding and reflection on the ethical risks and corresponding regulations of AI-enhanced BCIs.
Brain-Computer Interfaces/ethics*
;
Artificial Intelligence/ethics*
;
Humans
;
Deep Learning
;
User-Computer Interface
;
Electroencephalography
2.Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data.
Cong LI ; Xiao-Yan ZHANG ; Yun-Hong WU ; Xiao-Lei YANG ; Hua-Rong YU ; Hong-Bo JIN ; Ying-Bo LI ; Zhao-Hui ZHU ; Rui LIU ; Na LIU ; Yi XIE ; Lin-Li LYU ; Xin-Hong ZHU ; Hong TANG ; Hong-Fang LI ; Hong-Li LI ; Xiang-Jun ZENG ; Zai-Xing CHEN ; Xiao-Fang FAN ; Yan WANG ; Zhi-Juan WU ; Zun-Qiu WU ; Ya-Qun GUAN ; Ming-Ming XUE ; Bin LUO ; Ai-Mei WANG ; Xin-Wang YANG ; Ying YING ; Xiu-Hong YANG ; Xin-Zhong HUANG ; Ming-Fei LANG ; Shi-Min CHEN ; Huan-Huan ZHANG ; Zhong ZHANG ; Wu HUANG ; Guo-Biao XU ; Jia-Qi LIU ; Tao SONG ; Jing XIAO ; Yun-Long XIA ; You-Fei GUAN ; Liang ZHU
Acta Physiologica Sinica 2024;76(6):937-942
As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.
Artificial Intelligence/legislation & jurisprudence*
;
Humans
;
Consensus
;
Computer Security/standards*
;
Confidentiality/ethics*
;
Informed Consent/ethics*

Result Analysis
Print
Save
E-mail